Fortify Machine Learning Production Systems: Detect and Classify
Adversarial Attacks
- URL: http://arxiv.org/abs/2102.09695v1
- Date: Fri, 19 Feb 2021 00:47:16 GMT
- Title: Fortify Machine Learning Production Systems: Detect and Classify
Adversarial Attacks
- Authors: Matthew Ciolino, Josh Kalin, David Noever
- Abstract summary: In this work, we propose one piece of the production protection system: detecting an incoming adversarial attack and its characteristics.
The underlying model can be trained in a structured manner to be robust from those attacks.
The adversarial image classification space is explored for models commonly used in transfer learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Production machine learning systems are consistently under attack by
adversarial actors. Various deep learning models must be capable of accurately
detecting fake or adversarial input while maintaining speed. In this work, we
propose one piece of the production protection system: detecting an incoming
adversarial attack and its characteristics. Detecting types of adversarial
attacks has two primary effects: the underlying model can be trained in a
structured manner to be robust from those attacks and the attacks can be
potentially filtered out in realtime before causing any downstream damage. The
adversarial image classification space is explored for models commonly used in
transfer learning.
Related papers
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
imitation attacks can lead to erroneous identification and subsequent authentication of attackers.
Similar to face recognition, imitation attacks can also be detected with Machine Learning.
We propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
arXiv Detail & Related papers (2024-08-27T07:26:10Z) - Black-box Adversarial Transferability: An Empirical Study in Cybersecurity Perspective [0.0]
In adversarial machine learning, malicious users try to fool the deep learning model by inserting adversarial perturbation inputs into the model during its training or testing phase.
We empirically test the black-box adversarial transferability phenomena in cyber attack detection systems.
The results indicate that any deep learning model is highly susceptible to adversarial attacks, even if the attacker does not have access to the internal details of the target model.
arXiv Detail & Related papers (2024-04-15T06:56:28Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
In this work, we ask whether it is possible to infer data-agnostic victim model (VM) information from data-specific adversarial instances.
We collect a dataset of adversarial attacks across 7 attack types generated from 135 victim models.
We show that a simple, supervised model parsing network (MPN) is able to infer VM attributes from unseen adversarial attacks.
arXiv Detail & Related papers (2023-03-13T21:21:49Z) - Btech thesis report on adversarial attack detection and purification of
adverserially attacked images [0.0]
This thesis report is on detection and purification of adverserially attacked images.
A deep learning model is trained on certain training examples for various tasks such as classification, regression etc.
arXiv Detail & Related papers (2022-05-09T09:24:11Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
We investigate the transferability of adversarial network traffic against machine learning-based intrusion detection systems.
We examine Detect & Reject as a defensive mechanism to limit the effect of the transferability property of adversarial network traffic against machine learning-based intrusion detection systems.
arXiv Detail & Related papers (2021-12-22T17:54:54Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
We study a conceptually simple approach to defend few-shot classifiers against adversarial attacks.
We propose a simple attack-agnostic detection method, using the concept of self-similarity and filtering.
Our evaluation on the miniImagenet (MI) and CUB datasets exhibit good attack detection performance.
arXiv Detail & Related papers (2021-10-24T05:46:03Z) - Adversarial Attack Attribution: Discovering Attributable Signals in
Adversarial ML Attacks [0.7883722807601676]
Even production systems, such as self-driving cars and ML-as-a-service offerings, are susceptible to adversarial inputs.
Can perturbed inputs be attributed to the methods used to generate the attack?
We introduce the concept of adversarial attack attribution and create a simple supervised learning experimental framework to examine the feasibility of discovering attributable signals in adversarial attacks.
arXiv Detail & Related papers (2021-01-08T08:16:41Z) - Adversarial Attacks and Detection on Reinforcement Learning-Based
Interactive Recommender Systems [47.70973322193384]
Adversarial attacks pose significant challenges for detecting them at an early stage.
We propose attack-agnostic detection on reinforcement learning-based interactive recommendation systems.
We first craft adversarial examples to show their diverse distributions and then augment recommendation systems by detecting potential attacks.
arXiv Detail & Related papers (2020-06-14T15:41:47Z) - Adversarial Attacks on Machine Learning Cybersecurity Defences in
Industrial Control Systems [2.86989372262348]
This paper explores how adversarial learning can be used to target supervised models by generating adversarial samples.
It also explores how such samples can support the robustness of supervised models using adversarial training.
Overall, the classification performance of two widely used classifiers, Random Forest and J48, decreased by 16 and 20 percentage points when adversarial samples were present.
arXiv Detail & Related papers (2020-04-10T12:05:33Z) - Block Switching: A Stochastic Approach for Deep Learning Security [75.92824098268471]
Recent study of adversarial attacks has revealed the vulnerability of modern deep learning models.
In this paper, we introduce Block Switching (BS), a defense strategy against adversarial attacks based on onity.
arXiv Detail & Related papers (2020-02-18T23:14:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.