Direct generation of entangled photon pairs in nonlinear optical
waveguides
- URL: http://arxiv.org/abs/2111.12657v1
- Date: Wed, 24 Nov 2021 17:37:27 GMT
- Title: Direct generation of entangled photon pairs in nonlinear optical
waveguides
- Authors: \'Alvaro Rodr\'iguez Echarri, Joel D. Cox, and F. Javier Garc\'ia de
Abajo
- Abstract summary: Entangled photons are pivotal elements in emerging quantum information technologies.
We introduce a scheme by which entangled photon pairs are directly generated as guided mode states in optical waveguides.
Results should find application in the design of more efficient and compact quantum optics devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entangled photons are pivotal elements in emerging quantum information
technologies. While several schemes are available for the production of
entangled photons, they typically require the assistance of cumbersome optical
elements to couple them to other components involved in logic operations. Here,
we introduce a scheme by which entangled photon pairs are directly generated as
guided mode states in optical waveguides. The scheme relies on the intrinsic
nonlinearity of the waveguide material, circumventing the use of bulky optical
components. Specifically, we consider an optical fiber under normal
illumination, so that photon down-conversion can take place to waveguide states
emitted with opposite momentum into a spectral region populated by only two
accessible modes. By additionally configuring the external illumination to
interfere different incident directions, we can produce maximally entangled
photon-pair states, directly generated as waveguide modes with conversion
efficiencies that are competitive with respect to existing macroscopic schemes.
These results should find application in the design of more efficient and
compact quantum optics devices.
Related papers
- Polarization-entangled photon pairs generation from a single lithium niobate waveguide with single poling period [7.30580496740769]
We propose a simple and efficient scheme to generate polarization-entangled photon pairs based on type-0 SPDC.
By utilizing the strong dispersion engineering capabilities of thin-film waveguides, we can achieve both degenerate and highly detuned entangled photon pairs.
arXiv Detail & Related papers (2024-10-30T08:08:51Z) - Chiral Quantum-Optical Elements for Waveguide-QED with Sub-wavelength Rydberg-Atom Arrays [2.5652402930898988]
We describe an approach to achieve near-perfect unidirectional light-matter coupling to an effective quantum emitter formed by a subwavelength array of atoms in the Rydberg-blockade regime.
The described setup can function as a versatile nonlinear optical element in a free-space photonic quantum network with simple linear elements.
arXiv Detail & Related papers (2024-07-01T09:55:47Z) - Tunable generation of spatial entanglement in nonlinear waveguide arrays [0.0]
spatially entangled photon pairs based on parametric down-conversion in AlGaAs nonlinear waveguides arrays.
We use a double-pump configuration to engineer the output quantum state and implement various types of spatial correlations.
This demonstration, at room temperature and telecom wavelength, illustrates the potential of continuously-coupled systems.
arXiv Detail & Related papers (2024-05-13T20:55:54Z) - Avoiding lateral mode leakage in thin film lithium niobate waveguides
for the generation of spectrally pure photons at telecom wavelengths [0.0]
Photonic integrated optical components, notably straight waveguides, serve as pivotal elements for on-chip generation and manipulation of quantum states of light.
We focus on optimizing waveguides based on lithium niobate on insulator (LNOI) to generate photon pairs at telecom wavelength using spontaneous parametric down-conversion (SPDC)
Specifically, we investigate lateral leakage for all possible SPDC processes involving type 0, type I and type II phase matching conditions in an X-cut lithium niobate waveguide.
arXiv Detail & Related papers (2024-02-08T14:12:55Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - On-chip polarization-encoded single-qubit gates with twisted waveguides [58.720142291102135]
We develop a theory of a twisted waveguide unveiling its eigenmodes and transmission matrix in the closed form.
We demonstrate that twisted waveguides can realize virtually arbitrary polarization transformations while satisfying reasonable design constraints.
arXiv Detail & Related papers (2022-12-27T16:00:07Z) - Biphoton engineering using modal spatial overlap on-chip [2.9880862883728105]
We show that by utilizing modal coupling in a system of coupled waveguides, we explore the modal field overlap as a new degree of freedom for biphoton engineering.
This strategy can be applied to waveguides of different materials and structures, offering new possibilities for photonic quantum state engineering.
arXiv Detail & Related papers (2022-10-29T06:04:30Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Tunable directional photon scattering from a pair of superconducting
qubits [105.54048699217668]
In the optical and microwave frequency ranges tunable directionality can be achieved by applying external magnetic fields.
We demonstrate tunable directional scattering with just two transmon qubits coupled to a transmission line.
arXiv Detail & Related papers (2022-05-06T15:21:44Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Quantum electrodynamics in a topological waveguide [47.187609203210705]
In this work we investigate the properties of superconducting qubits coupled to a metamaterial waveguide based on a photonic analog of the Su-Schrieffer-Heeger model.
We explore topologically-induced properties of qubits coupled to such a waveguide, ranging from the formation of directional qubit-photon bound states to topology-dependent cooperative radiation effects.
arXiv Detail & Related papers (2020-05-08T00:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.