論文の概要: Particle Graph Autoencoders and Differentiable, Learned Energy Mover's
Distance
- arxiv url: http://arxiv.org/abs/2111.12849v1
- Date: Wed, 24 Nov 2021 23:50:15 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-05 03:07:01.550763
- Title: Particle Graph Autoencoders and Differentiable, Learned Energy Mover's
Distance
- Title(参考訳): 粒子グラフオートエンコーダと微分可能な学習エネルギー移動器の距離
- Authors: Steven Tsan, Raghav Kansal, Anthony Aportela, Daniel Diaz, Javier
Duarte, Sukanya Krishna, Farouk Mokhtar, Jean-Roch Vlimant, Maurizio Pierini
- Abstract要約: オートエンコーダは「粒子雲」表現でジェットで作動する。
我々は,グラフニューラルネットワークを用いてエネルギー移動器距離の微分可能な近似を開発する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autoencoders have useful applications in high energy physics in anomaly
detection, particularly for jets - collimated showers of particles produced in
collisions such as those at the CERN Large Hadron Collider. We explore the use
of graph-based autoencoders, which operate on jets in their "particle cloud"
representations and can leverage the interdependencies among the particles
within a jet, for such tasks. Additionally, we develop a differentiable
approximation to the energy mover's distance via a graph neural network, which
may subsequently be used as a reconstruction loss function for autoencoders.
- Abstract(参考訳): オートエンコーダは、特にジェットの異常検出(CERN大型ハドロン衝突型加速器のような衝突で発生する粒子の衝突シャワー)において、高エネルギー物理学において有用である。
粒子雲」表現でジェットを動作させるグラフベースのオートエンコーダの利用について検討し, ジェット内の粒子間の相互依存性を活用することができる。
さらに、グラフニューラルネットワークを用いてエネルギー移動子の距離を微分可能な近似法を開発し、オートエンコーダの再構成損失関数として利用することができる。
関連論文リスト
- 3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes [50.36933474990516]
本研究は, 粒子のトレーシング, 境界体積階層の構築, 高性能なレイトレーシングハードウェアを用いた各画素のレイキャストについて考察する。
半透明粒子の多量処理を効率的に行うために,有界メッシュで粒子をカプセル化するアルゴリズムについて述べる。
実験は、我々のアプローチの速度と精度、およびコンピュータグラフィックスとビジョンにおけるいくつかの応用を実証する。
論文 参考訳(メタデータ) (2024-07-09T17:59:30Z) - Improved particle-flow event reconstruction with scalable neural networks for current and future particle detectors [1.4609888393206634]
電子-陽電子衝突における事象再構成のためのスケーラブルな機械学習モデルについて, フル検出器シミュレーションに基づく検討を行った。
グラフニューラルネットワークとカーネルベースのトランスフォーマーを比較し、現実的な再構築を実現しつつ、操作を回避できることを実証する。
最良のグラフニューラルネットワークモデルでは、ルールベースのアルゴリズムと比較して、ジェット横運動量分解能が最大50%向上している。
論文 参考訳(メタデータ) (2023-09-13T08:16:15Z) - PCN: A Deep Learning Approach to Jet Tagging Utilizing Novel Graph Construction Methods and Chebyshev Graph Convolutions [0.0]
ジェットタグは高エネルギー物理実験における分類問題である。
現在のアプローチでは、複雑な衝突データに隠れたパターンを明らかにするためにディープラーニングを使用している。
可能な限り多くの情報をエンコードするジェットのグラフベース表現を提案する。
論文 参考訳(メタデータ) (2023-09-12T23:20:19Z) - RGCVAE: Relational Graph Conditioned Variational Autoencoder for
Molecule Design [70.59828655929194]
ディープグラフ変分自動エンコーダは、この問題に対処可能な、最も強力な機械学習ツールの1つである。
i)新しい強力なグラフ同型ネットワークを利用した符号化ネットワーク,(ii)新しい確率的復号化コンポーネントを提案する。
論文 参考訳(メタデータ) (2023-05-19T14:23:48Z) - Transformer with Implicit Edges for Particle-based Physics Simulation [135.77656965678196]
Implicit Edges (TIE) を用いたトランスフォーマーは、素粒子相互作用のリッチなセマンティクスをエッジフリーでキャプチャする。
様々な複雑さと素材の多様な領域におけるモデルの評価を行った。
論文 参考訳(メタデータ) (2022-07-22T03:45:29Z) - Adaptive Machine Learning for Time-Varying Systems: Low Dimensional
Latent Space Tuning [91.3755431537592]
本稿では,時間変化システムを対象とした適応機械学習手法を提案する。
我々は,エンコーダデコーダCNNのエンコーダ部出力において,非常に高次元(N>100k)の入力を低次元(N2)潜在空間にマッピングする。
そこで本手法では,割り込みを伴わないフィードバックに基づいて,内部の相関関係を学習し,その進化をリアルタイムで追跡する。
論文 参考訳(メタデータ) (2021-07-13T16:05:28Z) - Adaptive Latent Space Tuning for Non-Stationary Distributions [62.997667081978825]
本稿では,ディープエンコーダ・デコーダ方式cnnの低次元潜在空間の適応チューニング法を提案する。
粒子加速器における時間変動荷電粒子ビームの特性を予測するためのアプローチを実証する。
論文 参考訳(メタデータ) (2021-05-08T03:50:45Z) - Autoencoders for unsupervised anomaly detection in high energy physics [105.54048699217668]
QCDジェット画像の背景にあるトップジェット画像のタグ付けについて検討する。
標準オートエンコーダ設定をモデル非依存の異常タガーとはみなせないことを示す。
モデル非依存異常検出の課題に対する性能改善策を提案する。
論文 参考訳(メタデータ) (2021-04-19T05:06:57Z) - Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle
Reconstruction in High Energy Physics [11.125632758828266]
FPGA上で1$mumathrms未満のレイテンシで実行できる距離重み付きグラフネットワークの設計方法について論じる。
本研究では,粒子衝突型加速器で動作する次世代熱量計における粒子の再構成と同定に関連する代表的課題について考察する。
我々は、圧縮されたモデルをファームウェアに変換し、FPGA上で実装する。
論文 参考訳(メタデータ) (2020-08-08T21:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。