論文の概要: Coded Illumination for Improved Lensless Imaging
- arxiv url: http://arxiv.org/abs/2111.12862v1
- Date: Thu, 25 Nov 2021 01:22:40 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 17:53:30.381015
- Title: Coded Illumination for Improved Lensless Imaging
- Title(参考訳): レンズレス画像改善のための符号化照明
- Authors: Yucheng Zheng and M. Salman Asif
- Abstract要約: 我々は,レンズレスカメラで再構成した画像の品質向上のために,符号化照明を用いることを提案する。
画像モデルでは、レンズレスカメラがセンサを計測する際、シーン/オブジェクトは複数の符号化照明パターンで照らされる。
本稿では,システムの分離性とブロック対角構造を利用した高速かつ低複雑さな回復アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 22.992552346745523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mask-based lensless cameras can be flat, thin and light-weight, which makes
them suitable for novel designs of computational imaging systems with large
surface areas and arbitrary shapes. Despite recent progress in lensless
cameras, the quality of images recovered from the lensless cameras is often
poor due to the ill-conditioning of the underlying measurement system. In this
paper, we propose to use coded illumination to improve the quality of images
reconstructed with lensless cameras. In our imaging model, the scene/object is
illuminated by multiple coded illumination patterns as the lensless camera
records sensor measurements. We designed and tested a number of illumination
patterns and observed that shifting dots (and related orthogonal) patterns
provide the best overall performance. We propose a fast and low-complexity
recovery algorithm that exploits the separability and block-diagonal structure
in our system. We present simulation results and hardware experiment results to
demonstrate that our proposed method can significantly improve the
reconstruction quality.
- Abstract(参考訳): マスクベースのレンズレスカメラは、平坦で薄くて軽量であり、大きな表面積と任意の形状を持つ計算イメージングシステムの新しい設計に適している。
近年のレンズレスカメラの進歩にもかかわらず、レンズレスカメラから回収された画像の品質は、基礎となる測定システムの悪条件のため、しばしば劣っている。
本稿では,レンズレスカメラで再構成した画像の品質向上のために,符号化照明を用いることを提案する。
画像モデルでは、レンズレスカメラがセンサを計測する際、シーン/オブジェクトは複数の符号化照明パターンで照らされる。
多数の照明パターンを設計、テストし、ドット(および関連する直交)パターンが全体的なパフォーマンスを最高のものにするのを観察しました。
本稿では,システムの分離性とブロック対角構造を利用した高速かつ低複雑さな回復アルゴリズムを提案する。
シミュレーション結果とハードウェア実験結果を示し,提案手法が復元品質を著しく向上できることを実証する。
関連論文リスト
- Optical Aberration Correction in Postprocessing using Imaging Simulation [17.331939025195478]
モバイル写真の人気は増え続けている。
最近のカメラは、これらの修正作業の一部を光学設計から後処理システムに移行した。
光学収差による劣化を回復するための実用的手法を提案する。
論文 参考訳(メタデータ) (2023-05-10T03:20:39Z) - Neural Lens Modeling [50.57409162437732]
NeuroLens(ニューロレンス)は、点投影と光線鋳造に使用できる歪みと磁化のための神経レンズモデルである。
古典的なキャリブレーションターゲットを使用してプリキャプチャのキャリブレーションを行うことができ、後に3D再構成の際にキャリブレーションやリファインメントを行うために使用できる。
このモデルは、多くのレンズタイプにまたがって一般化されており、既存の3D再構成とレンダリングシステムとの統合は容易である。
論文 参考訳(メタデータ) (2023-04-10T20:09:17Z) - High Dynamic Range and Super-Resolution from Raw Image Bursts [52.341483902624006]
本稿では,露光ブラケット付きハンドヘルドカメラで撮影した原写真からの高解像度・高ダイナミックレンジカラー画像の再構成について紹介する。
提案アルゴリズムは,画像復元における最先端の学習手法と比較して,メモリ要求の少ない高速なアルゴリズムである。
実験では、ハンドヘルドカメラで野生で撮影された実際の写真に最大4ドル(約4,800円)の超高解像度な要素で優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-29T13:31:28Z) - Learning rich optical embeddings for privacy-preserving lensless image
classification [17.169529483306103]
我々は、光学系をエンコーダとしてキャストするユニークな多重化特性を利用して、カメラセンサーに直接学習した埋め込みを生成する。
画像分類の文脈では、エンコーダのパラメータと画像分類器のパラメータをエンドツーエンドで共同で最適化する。
我々の実験は、レンズレス光エンコーダとデジタル処理を共同で学習することで、センサーに低解像度の埋め込みが可能であることを示し、その結果、これらの測定から有意義な画像の復元がはるかに困難であることから、プライバシーが向上することを示している。
論文 参考訳(メタデータ) (2022-06-03T07:38:09Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
そこで我々は,インターネット写真コレクションから効率よく高精度な表面再構成を実現する新しい手法を提案する。
そこで本研究では,これらのシーンにおける再構成性能を評価するための新しいベンチマークとプロトコルを提案する。
論文 参考訳(メタデータ) (2022-05-25T17:59:53Z) - Unrolled Primal-Dual Networks for Lensless Cameras [0.45880283710344055]
教師付き原始二重再構成法を学習することで,文献における画像品質の整合性が得られることを示す。
この改善は、学習可能な前方モデルと随伴モデルとを学習された原始双対最適化フレームワークに組み込むことで、再構成画像の品質を向上できるという発見に起因している。
論文 参考訳(メタデータ) (2022-03-08T19:21:39Z) - A Simple Framework for 3D Lensless Imaging with Programmable Masks [37.35255907261072]
本稿では,プログラム可能なマスク上の異なるパターンを用いて,少数の計測値をキャプチャするレンズレスイメージングシステムを提案する。
まず,シーン内の一定数の深さ面上のテクスチャを復元する高速回復アルゴリズムを提案する。
第二に、プログラマブルレンズレスカメラにおけるマスク設計問題について検討し、マスクパターンを最適化するための設計テンプレートを提供する。
第3に、再構築後のアーティファクトを特定し、削除するための後処理のステップとして、精細化ネットワークを使用します。
論文 参考訳(メタデータ) (2021-08-18T04:05:33Z) - How to Calibrate Your Event Camera [58.80418612800161]
画像再構成を用いた汎用イベントカメラキャリブレーションフレームワークを提案する。
ニューラルネットワークに基づく画像再構成は,イベントカメラの内在的・外在的キャリブレーションに適していることを示す。
論文 参考訳(メタデータ) (2021-05-26T07:06:58Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
そこで本研究では,収差画像とpsfマップを入力とし,レンズ固有深層プリエントを組み込んだ潜在高品質版を生成する,psf対応プラグイン・アンド・プレイ深層ネットワークを提案する。
具体的には、多彩なレンズの集合からベースモデルを事前訓練し、パラメータを迅速に精製して特定のレンズに適応させる。
論文 参考訳(メタデータ) (2021-04-07T12:00:38Z) - FlatNet: Towards Photorealistic Scene Reconstruction from Lensless
Measurements [31.353395064815892]
レンズレス再構成における画像品質の大幅な向上を図った非定位深層学習に基づく再構成手法を提案する。
われわれのアプローチは、$textitFlatNet$と呼ばれ、マスクベースのレンズレスカメラから高品質のフォトリアリスティック画像を再構成するためのフレームワークを定めている。
論文 参考訳(メタデータ) (2020-10-29T09:20:22Z) - Redesigning SLAM for Arbitrary Multi-Camera Systems [51.81798192085111]
SLAMシステムにより多くのカメラを追加することで、堅牢性と精度が向上するが、視覚的なフロントエンドの設計は大幅に複雑になる。
本研究では,任意のマルチカメラ装置で動作する適応SLAMシステムを提案する。
これらの修正を応用した最先端の視覚慣性計測装置を試作し, 改良したパイプラインが広い範囲のカメラ装置に適応可能であることを示す実験結果を得た。
論文 参考訳(メタデータ) (2020-03-04T11:44:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。