論文の概要: Robustness against Adversarial Attacks in Neural Networks using
Incremental Dissipativity
- arxiv url: http://arxiv.org/abs/2111.12906v1
- Date: Thu, 25 Nov 2021 04:42:57 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-29 16:15:12.253158
- Title: Robustness against Adversarial Attacks in Neural Networks using
Incremental Dissipativity
- Title(参考訳): インクリメンタルディシパティティを用いたニューラルネットワークの敵攻撃に対するロバスト性
- Authors: Bernardo Aquino, Arash Rahnama, Peter Seiler, Lizhen Lin, Vijay Gupta
- Abstract要約: 逆例はニューラルネットワークの分類性能を低下させるのが容易である。
本研究は,ニューラルネットワークに対する漸進的拡散性に基づくロバスト性証明を提案する。
- 参考スコア(独自算出の注目度): 3.8673567847548114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial examples can easily degrade the classification performance in
neural networks. Empirical methods for promoting robustness to such examples
have been proposed, but often lack both analytical insights and formal
guarantees. Recently, some robustness certificates have appeared in the
literature based on system theoretic notions. This work proposes an incremental
dissipativity-based robustness certificate for neural networks in the form of a
linear matrix inequality for each layer. We also propose an equivalent spectral
norm bound for this certificate which is scalable to neural networks with
multiple layers. We demonstrate the improved performance against adversarial
attacks on a feed-forward neural network trained on MNIST and an Alexnet
trained using CIFAR-10.
- Abstract(参考訳): 逆例はニューラルネットワークの分類性能を低下させるのが容易である。
このような例に対するロバスト性を促進する実証的な方法が提案されているが、しばしば分析的洞察と形式的保証の両方を欠いている。
近年,システム理論的概念に基づく堅牢性証明が文献に登場している。
本稿では,各層に対する線形行列不等式という形で,ニューラルネットワークのための漸進的分散性に基づくロバストネス証明を提案する。
また、複数の層を持つニューラルネットワークに対してスケーラブルな、この証明書に対する等価なスペクトルノルムを提案する。
mnistでトレーニングされたフィードフォワードニューラルネットワークとcifar-10でトレーニングされたアレクサネットの敵の攻撃に対する性能改善を実証する。
関連論文リスト
- Compositional Curvature Bounds for Deep Neural Networks [7.373617024876726]
安全クリティカルなアプリケーションにおけるニューラルネットワークの普及を脅かす重要な課題は、敵の攻撃に対する脆弱性である。
本研究では, 連続的に微分可能な深層ニューラルネットワークの2次挙動について検討し, 対向摂動に対する堅牢性に着目した。
ニューラルネットワークの第2微分の証明可能な上界を解析的に計算する新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-07T17:50:15Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
我々は、逆向きに頑健な量子化ニューラルネットワーク(QNN)の訓練と証明の課題について検討する。
近年の研究では、浮動小数点ニューラルネットワークが量子化後の敵攻撃に対して脆弱であることが示されている。
本稿では、堅牢なQNNをトレーニングするための新しい方法であるQA-IBP(quantization-aware interval bound propagation)を提案する。
論文 参考訳(メタデータ) (2022-11-29T13:32:38Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
ニューラルネット・プルーニングはディープ・ニューラル・ネットワーク(NN)の実証的ロバスト性を向上させることができることを示す。
実験の結果,NNを適切に刈り取ることで,その精度を8.2%まで向上させることができることがわかった。
さらに,認証された宝くじの存在が,従来の密集モデルの標準および認証された堅牢な精度に一致することを観察する。
論文 参考訳(メタデータ) (2022-06-15T05:48:51Z) - Efficient and Robust Classification for Sparse Attacks [34.48667992227529]
我々は、画像認識、自然言語処理、マルウェア検出の領域において効果的な攻撃として示されてきた$ell$-normで束縛された摂動を考える。
我々は,「トランケーション」と「アドリアル・トレーニング」を組み合わせた新しい防衛手法を提案する。
得られた洞察に触発され、これらのコンポーネントをニューラルネットワーク分類器に拡張する。
論文 参考訳(メタデータ) (2022-01-23T21:18:17Z) - Robustness Certificates for Implicit Neural Networks: A Mixed Monotone
Contractive Approach [60.67748036747221]
暗黙のニューラルネットワークは、競合性能とメモリ消費の削減を提供する。
入力逆流の摂動に関して、それらは不安定なままである。
本稿では,暗黙的ニューラルネットワークのロバスト性検証のための理論的および計算的枠組みを提案する。
論文 参考訳(メタデータ) (2021-12-10T03:08:55Z) - Evaluating the Robustness of Bayesian Neural Networks Against Different
Types of Attacks [2.599882743586164]
ベイズニューラルネットワークは, 決定論的ニューラルネットワークモデルに対して発生する敵攻撃に対して, はるかに高い堅牢性を達成することを示す。
後肢は、現在進行中の悪意ある活動の安全前駆体として機能する。
これは、安全クリティカルなドメイン内の意思決定パイプライン構築におけるレイヤの利用を推奨する。
論文 参考訳(メタデータ) (2021-06-17T03:18:59Z) - An Orthogonal Classifier for Improving the Adversarial Robustness of
Neural Networks [21.13588742648554]
近年の研究では、分類層に特定の変更を加えることで、ニューラルネットワークの堅牢性を向上させることが示されている。
我々は、成分が同じ大きさの高密度直交重み行列を明示的に構築し、新しいロバストな分類器を生み出す。
我々の方法は、多くの最先端の防衛アプローチに対して効率的で競争力がある。
論文 参考訳(メタデータ) (2021-05-19T13:12:14Z) - Adversarial Examples Detection with Bayesian Neural Network [57.185482121807716]
本稿では,ランダムな成分が予測器の滑らかさを向上できるという観測によって動機づけられた敵の例を検出するための新しい枠組みを提案する。
本稿では,BATer を略した新しいベイズ対向型サンプル検出器を提案し,対向型サンプル検出の性能を向上させる。
論文 参考訳(メタデータ) (2021-05-18T15:51:24Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
過パラメータのニューラルネットワークが制約を満たしていることを示す。
公平なニューラルネットワーク分類器を構築する上で重要な要素は、ニューラルネットワークの非応答解析を確立することである。
論文 参考訳(メタデータ) (2020-12-30T18:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。