Detecting and Tracking Small and Dense Moving Objects in Satellite
Videos: A Benchmark
- URL: http://arxiv.org/abs/2111.12960v1
- Date: Thu, 25 Nov 2021 08:01:41 GMT
- Title: Detecting and Tracking Small and Dense Moving Objects in Satellite
Videos: A Benchmark
- Authors: Qian Yin, Qingyong Hu, Hao Liu, Feng Zhang, Yingqian Wang, Zaiping
Lin, Wei An, Yulan Guo
- Abstract summary: We build a large-scale satellite video dataset with rich annotations for the task of moving object detection and tracking.
This dataset is collected by the Jilin-1 satellite constellation.
We establish the first public benchmark for moving object detection and tracking in satellite videos.
- Score: 30.078513715446196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Satellite video cameras can provide continuous observation for a large-scale
area, which is important for many remote sensing applications. However,
achieving moving object detection and tracking in satellite videos remains
challenging due to the insufficient appearance information of objects and lack
of high-quality datasets. In this paper, we first build a large-scale satellite
video dataset with rich annotations for the task of moving object detection and
tracking. This dataset is collected by the Jilin-1 satellite constellation and
composed of 47 high-quality videos with 1,646,038 instances of interest for
object detection and 3,711 trajectories for object tracking. We then introduce
a motion modeling baseline to improve the detection rate and reduce false
alarms based on accumulative multi-frame differencing and robust matrix
completion. Finally, we establish the first public benchmark for moving object
detection and tracking in satellite videos, and extensively evaluate the
performance of several representative approaches on our dataset. Comprehensive
experimental analyses and insightful conclusions are also provided. The dataset
is available at https://github.com/QingyongHu/VISO.
Related papers
- Addressing single object tracking in satellite imagery through prompt-engineered solutions [2.098136587906041]
We propose a training-free point-based tracking method for small-scale objects on satellite videos.
Our strategy marks a significant advancement in robust tracking solutions tailored for satellite imagery in remote sensing applications.
arXiv Detail & Related papers (2024-07-07T23:50:29Z) - FlightScope: A Deep Comprehensive Review of Aircraft Detection Algorithms in Satellite Imagery [2.9687381456164004]
This paper critically evaluates and compares a suite of advanced object detection algorithms customized for the task of identifying aircraft within satellite imagery.
This research encompasses an array of methodologies including YOLO versions 5 and 8, Faster RCNN, CenterNet, RetinaNet, RTMDet, and DETR, all trained from scratch.
YOLOv5 emerges as a robust solution for aerial object detection, underlining its importance through superior mean average precision, Recall, and Intersection over Union scores.
arXiv Detail & Related papers (2024-04-03T17:24:27Z) - SeMoLi: What Moves Together Belongs Together [51.72754014130369]
We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
arXiv Detail & Related papers (2024-02-29T18:54:53Z) - Vehicle Perception from Satellite [54.07157185000604]
The dataset is constructed based on 12 satellite videos and 14 synthetic videos recorded from GTA-V.
It supports several tasks, including tiny object detection, counting and density estimation.
128,801 vehicles are annotated totally, and the number of vehicles in each image varies from 0 to 101.
arXiv Detail & Related papers (2024-02-01T15:59:16Z) - Heteroskedastic Geospatial Tracking with Distributed Camera Networks [15.938635024739845]
We focus on the geospatial object tracking problem using data from a distributed camera network.
The goal is to predict an object's track in geospatial coordinates along with uncertainty over the object's location.
We present a novel single-object geospatial tracking data set that includes high-accuracy ground truth object locations and video data from a network of four cameras.
arXiv Detail & Related papers (2023-06-04T16:55:38Z) - Learning to Track Object Position through Occlusion [32.458623495840904]
Occlusion is one of the most significant challenges encountered by object detectors and trackers.
We propose a tracking-by-detection approach that builds upon the success of region based video object detectors.
Our approach achieves superior results on a dataset of furniture assembly videos collected from the internet.
arXiv Detail & Related papers (2021-06-20T22:29:46Z) - Finding a Needle in a Haystack: Tiny Flying Object Detection in 4K
Videos using a Joint Detection-and-Tracking Approach [19.59528430884104]
We present a neural network model called the Recurrent Correlational Network, where detection and tracking are jointly performed.
In experiments with datasets containing images of scenes with small flying objects, such as birds and unmanned aerial vehicles, the proposed method yielded consistent improvements.
Our network performs as well as state-of-the-art generic object trackers when it was evaluated as a tracker on a bird image dataset.
arXiv Detail & Related papers (2021-05-18T03:22:03Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Ensembling object detectors for image and video data analysis [98.26061123111647]
We propose a method for ensembling the outputs of multiple object detectors for improving detection performance and precision of bounding boxes on image data.
We extend it to video data by proposing a two-stage tracking-based scheme for detection refinement.
arXiv Detail & Related papers (2021-02-09T12:38:16Z) - Benchmarking Unsupervised Object Representations for Video Sequences [111.81492107649889]
We compare the perceptual abilities of four object-centric approaches: ViMON, OP3, TBA and SCALOR.
Our results suggest that the architectures with unconstrained latent representations learn more powerful representations in terms of object detection, segmentation and tracking.
Our benchmark may provide fruitful guidance towards learning more robust object-centric video representations.
arXiv Detail & Related papers (2020-06-12T09:37:24Z) - TAO: A Large-Scale Benchmark for Tracking Any Object [95.87310116010185]
Tracking Any Object dataset consists of 2,907 high resolution videos, captured in diverse environments, which are half a minute long on average.
We ask annotators to label objects that move at any point in the video, and give names to them post factum.
Our vocabulary is both significantly larger and qualitatively different from existing tracking datasets.
arXiv Detail & Related papers (2020-05-20T21:07:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.