SeMoLi: What Moves Together Belongs Together
- URL: http://arxiv.org/abs/2402.19463v2
- Date: Mon, 25 Mar 2024 14:27:03 GMT
- Title: SeMoLi: What Moves Together Belongs Together
- Authors: Jenny Seidenschwarz, Aljoša Ošep, Francesco Ferroni, Simon Lucey, Laura Leal-Taixé,
- Abstract summary: We tackle semi-supervised object detection based on motion cues.
Recent results suggest that motion-based clustering methods can be used to pseudo-label instances of moving objects.
We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner.
- Score: 51.72754014130369
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle semi-supervised object detection based on motion cues. Recent results suggest that heuristic-based clustering methods in conjunction with object trackers can be used to pseudo-label instances of moving objects and use these as supervisory signals to train 3D object detectors in Lidar data without manual supervision. We re-think this approach and suggest that both, object detection, as well as motion-inspired pseudo-labeling, can be tackled in a data-driven manner. We leverage recent advances in scene flow estimation to obtain point trajectories from which we extract long-term, class-agnostic motion patterns. Revisiting correlation clustering in the context of message passing networks, we learn to group those motion patterns to cluster points to object instances. By estimating the full extent of the objects, we obtain per-scan 3D bounding boxes that we use to supervise a Lidar object detection network. Our method not only outperforms prior heuristic-based approaches (57.5 AP, +14 improvement over prior work), more importantly, we show we can pseudo-label and train object detectors across datasets.
Related papers
- TrajSSL: Trajectory-Enhanced Semi-Supervised 3D Object Detection [59.498894868956306]
Pseudo-labeling approaches to semi-supervised learning adopt a teacher-student framework.
We leverage pre-trained motion-forecasting models to generate object trajectories on pseudo-labeled data.
Our approach improves pseudo-label quality in two distinct manners.
arXiv Detail & Related papers (2024-09-17T05:35:00Z) - Vision-Language Guidance for LiDAR-based Unsupervised 3D Object Detection [16.09503890891102]
We propose an unsupervised 3D detection approach that operates exclusively on LiDAR point clouds.
We exploit the inherent CLI-temporal knowledge of LiDAR point clouds for clustering, tracking, as well as boxtext and label refinement.
Our approach outperforms state-of-the-art unsupervised 3D object detectors on the Open dataset.
arXiv Detail & Related papers (2024-08-07T14:14:53Z) - PatchContrast: Self-Supervised Pre-training for 3D Object Detection [14.603858163158625]
We introduce PatchContrast, a novel self-supervised point cloud pre-training framework for 3D object detection.
We show that our method outperforms existing state-of-the-art models on three commonly-used 3D detection datasets.
arXiv Detail & Related papers (2023-08-14T07:45:54Z) - Once Detected, Never Lost: Surpassing Human Performance in Offline LiDAR
based 3D Object Detection [50.959453059206446]
This paper aims for high-performance offline LiDAR-based 3D object detection.
We first observe that experienced human annotators annotate objects from a track-centric perspective.
We propose a high-performance offline detector in a track-centric perspective instead of the conventional object-centric perspective.
arXiv Detail & Related papers (2023-04-24T17:59:05Z) - InsMOS: Instance-Aware Moving Object Segmentation in LiDAR Data [13.196031553445117]
We propose a novel network that addresses the challenge of segmenting moving objects in 3D LiDAR scans.
Our method exploits a sequence of point clouds as input and quantifies them into 4D voxels.
We use 4D sparse convolutions to extract motion features from the 4D voxels and inject them into the current scan.
arXiv Detail & Related papers (2023-03-07T14:12:52Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - Track, Check, Repeat: An EM Approach to Unsupervised Tracking [20.19397660306534]
We propose an unsupervised method for detecting and tracking moving objects in 3D, in unlabelled RGB-D videos.
We learn an ensemble of appearance-based 2D and 3D detectors, under heavy data augmentation.
We compare against existing unsupervised object discovery and tracking methods, using challenging videos from CATER and KITTI.
arXiv Detail & Related papers (2021-04-07T22:51:39Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - Tracking from Patterns: Learning Corresponding Patterns in Point Clouds
for 3D Object Tracking [34.40019455462043]
We propose to learn 3D object correspondences from temporal point cloud data and infer the motion information from correspondence patterns.
Our method exceeds the existing 3D tracking methods on both the KITTI and larger scale Nuscenes dataset.
arXiv Detail & Related papers (2020-10-20T06:07:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.