OTB-morph: One-Time Biometrics via Morphing applied to Face Templates
- URL: http://arxiv.org/abs/2111.13213v1
- Date: Thu, 25 Nov 2021 18:35:34 GMT
- Title: OTB-morph: One-Time Biometrics via Morphing applied to Face Templates
- Authors: Mahdi Ghafourian, Julian Fierrez, Ruben Vera-Rodriguez, Ignacio Serna,
Aythami Morales
- Abstract summary: This paper introduces a new scheme for cancelable biometrics aimed at protecting the templates against potential attacks.
An experimental implementation of the proposed scheme is given for face biometrics.
- Score: 8.623680649444212
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cancelable biometrics refers to a group of techniques in which the biometric
inputs are transformed intentionally using a key before processing or storage.
This transformation is repeatable enabling subsequent biometric comparisons.
This paper introduces a new scheme for cancelable biometrics aimed at
protecting the templates against potential attacks, applicable to any
biometric-based recognition system. Our proposed scheme is based on
time-varying keys obtained from morphing random biometric information. An
experimental implementation of the proposed scheme is given for face
biometrics. The results confirm that the proposed approach is able to withstand
against leakage attacks while improving the recognition performance.
Related papers
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
imitation attacks can lead to erroneous identification and subsequent authentication of attackers.
Similar to face recognition, imitation attacks can also be detected with Machine Learning.
We propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
arXiv Detail & Related papers (2024-08-27T07:26:10Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - General Framework to Evaluate Unlinkability in Biometric Template
Protection Systems [8.594189672226165]
We propose a new framework for the evaluation of biometric templates' unlinkability.
It is applied to assess the unlinkability of four state-of-the-art techniques for biometric template protection: biometric salting, Bloom filters, Homomorphic Encryption and block re-mapping.
arXiv Detail & Related papers (2023-11-08T12:22:57Z) - Privacy-preserving Multi-biometric Indexing based on Frequent Binary
Patterns [7.092869001331781]
We propose an efficient privacy-preserving multi-biometric identification system that retrieves protected deep cancelable templates.
A multi-biometric binning scheme is designed to exploit the low intra-class variation properties contained in the frequent binary patterns extracted from different types of biometric characteristics.
arXiv Detail & Related papers (2023-10-04T18:18:24Z) - OTB-morph: One-Time Biometrics via Morphing [16.23764869038004]
This paper introduces a new idea to exploit as a transformation function for cancelable biometrics.
An experimental implementation of the proposed scheme is given for face biometrics.
arXiv Detail & Related papers (2023-02-17T18:39:40Z) - Pain level and pain-related behaviour classification using GRU-based
sparsely-connected RNNs [61.080598804629375]
People with chronic pain unconsciously adapt specific body movements to protect themselves from injury or additional pain.
Because there is no dedicated benchmark database to analyse this correlation, we considered one of the specific circumstances that potentially influence a person's biometrics during daily activities.
We proposed a sparsely-connected recurrent neural networks (s-RNNs) ensemble with the gated recurrent unit (GRU) that incorporates multiple autoencoders.
We conducted several experiments which indicate that the proposed method outperforms the state-of-the-art approaches in classifying both pain level and pain-related behaviour.
arXiv Detail & Related papers (2022-12-20T12:56:28Z) - Facial Soft Biometrics for Recognition in the Wild: Recent Works,
Annotation, and COTS Evaluation [63.05890836038913]
We study the role of soft biometrics to enhance person recognition systems in unconstrained scenarios.
We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems.
Experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning.
arXiv Detail & Related papers (2022-10-24T11:29:57Z) - Super-Resolution for Selfie Biometrics: Introduction and Application to
Face and Iris [67.74999528342273]
Lack of resolution has a negative impact on the performance of image-based biometrics.
Super-resolution techniques have to be adapted for the particularities of images from a specific biometric modality.
This chapter presents an overview of recent advances in super-resolution reconstruction of face and iris images.
arXiv Detail & Related papers (2022-04-12T10:28:31Z) - Authentication Attacks on Projection-based Cancelable Biometric Schemes [0.6499759302108924]
Cancelable biometric schemes aim at generating secure biometric templates by combining user specific tokens, such as password, stored secret or salt, along with biometric data.
The security requirements of cancelable biometric schemes concern the irreversibility, unlinkability and revocability of templates, without losing in accuracy of comparison.
In this paper, we formalize these attacks for a traditional cancelable scheme with the help of integer linear programming (ILP) and quadratically constrained quadratic programming (QCQP)
arXiv Detail & Related papers (2021-10-28T14:39:35Z) - Feature Fusion Methods for Indexing and Retrieval of Biometric Data:
Application to Face Recognition with Privacy Protection [15.834050000008878]
The proposed method reduces the computational workload associated with a biometric identification transaction by 90%.
The method guarantees unlinkability, irreversibility, and renewability of the protected biometric data.
arXiv Detail & Related papers (2021-07-27T08:53:29Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.