Provably Secure Public-Key Steganography Based on Admissible Encoding
- URL: http://arxiv.org/abs/2504.19454v1
- Date: Mon, 28 Apr 2025 03:42:25 GMT
- Title: Provably Secure Public-Key Steganography Based on Admissible Encoding
- Authors: Xin Zhang, Kejiang Chen, Na Zhao, Weiming Zhang, Nenghai Yu,
- Abstract summary: The technique of hiding secret messages within seemingly harmless covertext is known as provably secure steganography (PSS)<n>PSS evolves from symmetric key steganography to public-key steganography, functioning without the requirement of a pre-shared key.<n>This paper proposes a more general elliptic curve public key steganography method based on admissible encoding.
- Score: 66.38591467056939
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The technique of hiding secret messages within seemingly harmless covertext to evade examination by censors with rigorous security proofs is known as provably secure steganography (PSS). PSS evolves from symmetric key steganography to public-key steganography, functioning without the requirement of a pre-shared key and enabling the extension to multi-party covert communication and identity verification mechanisms. Recently, a public-key steganography method based on elliptic curves was proposed, which uses point compression to eliminate the algebraic structure of curve points. However, this method has strict requirements on the curve parameters and is only available on half of the points. To overcome these limitations, this paper proposes a more general elliptic curve public key steganography method based on admissible encoding. By applying the tensor square function to the known well-distributed encoding, we construct admissible encoding, which can create the pseudo-random public-key encryption function. The theoretical analysis and experimental results show that the proposed provable secure public-key steganography method can be deployed on all types of curves and utilize all points on the curve.
Related papers
- Homomorphic Encryption Based on Lattice Post-Quantum Cryptography [0.0]
Homomorphic encryption methods are vulnerable to quantum computing attacks.<n>This study proposes a lattice-based post-quantum homomorphic encryption scheme.<n>The findings are intended to serve as a reference for developers of homomorphic encryption applications.
arXiv Detail & Related papers (2024-12-23T05:30:44Z) - BiCert: A Bilinear Mixed Integer Programming Formulation for Precise Certified Bounds Against Data Poisoning Attacks [62.897993591443594]
Data poisoning attacks pose one of the biggest threats to modern AI systems.<n>Data poisoning attacks pose one of the biggest threats to modern AI systems.<n>Data poisoning attacks pose one of the biggest threats to modern AI systems.
arXiv Detail & Related papers (2024-12-13T14:56:39Z) - Lattice-Based Vulnerabilities in Lee Metric Post-Quantum Cryptosystems [3.277820036565198]
Post-quantum cryptography has gained attention due to the need for secure cryptographic systems in the face of quantum computing.
We consider a generic Lee metric based McEliece type cryptosystem and evaluate its security against lattice-based attacks.
arXiv Detail & Related papers (2024-09-24T12:21:33Z) - Multi-Layered Security System: Integrating Quantum Key Distribution with Classical Cryptography to Enhance Steganographic Security [0.0]
We present a novel cryptographic system that integrates Quantum Key Distribution (QKD) with classical encryption techniques.
Our approach leverages the E91 QKD protocol to generate a shared secret key between communicating parties.
This key is then hashed using the Secure Hash Algorithm (SHA) to provide a fixedlength, high-entropy key.
arXiv Detail & Related papers (2024-08-13T15:20:29Z) - PQCMC: Post-Quantum Cryptography McEliece-Chen Implicit Certificate Scheme [0.0]
This study proposes a post-quantum cryptography McEliece-Chen (PQCMC) based on an efficient random invertible matrix generation method to issue pseudonymous certificates with less time.
This study demonstrates the viability of the implicit certificate scheme based on PQC as a means of countering quantum computing threats.
arXiv Detail & Related papers (2024-01-03T13:34:20Z) - Publicly-Verifiable Deletion via Target-Collapsing Functions [81.13800728941818]
We show that targetcollapsing enables publiclyverifiable deletion (PVD)
We build on this framework to obtain a variety of primitives supporting publiclyverifiable deletion from weak cryptographic assumptions.
arXiv Detail & Related papers (2023-03-15T15:00:20Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
We build on the no-cloning principle of quantum mechanics and design cryptographic schemes with key-revocation capabilities.
We consider schemes where secret keys are represented as quantum states with the guarantee that, once the secret key is successfully revoked from a user, they no longer have the ability to perform the same functionality as before.
arXiv Detail & Related papers (2023-02-28T18:58:11Z) - Perfectly Secure Steganography Using Minimum Entropy Coupling [60.154855689780796]
We show that a steganography procedure is perfectly secure under Cachin 1998's information-theoretic model of steganography.
We also show that, among perfectly secure procedures, a procedure maximizes information throughput if and only if it is induced by a minimum entropy coupling.
arXiv Detail & Related papers (2022-10-24T17:40:07Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.