論文の概要: Unsupervised Feature Ranking via Attribute Networks
- arxiv url: http://arxiv.org/abs/2111.13273v1
- Date: Thu, 25 Nov 2021 23:30:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 02:10:57.338579
- Title: Unsupervised Feature Ranking via Attribute Networks
- Title(参考訳): 属性ネットワークによる教師なし機能ランキング
- Authors: Urh Primo\v{z}i\v{c}, Bla\v{z} \v{S}krlj, Sa\v{s}o D\v{z}eroski and
Matej Petkovi\'c
- Abstract要約: 本研究では,FRANe (Feature Ranking via Attribute Networks)を提案する。
大規模なベンチマークで実証的に示すように、Freeは最先端の競合製品よりもパフォーマンスがよいのです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The need for learning from unlabeled data is increasing in contemporary
machine learning. Methods for unsupervised feature ranking, which identify the
most important features in such data are thus gaining attention, and so are
their applications in studying high throughput biological experiments or user
bases for recommender systems. We propose FRANe (Feature Ranking via Attribute
Networks), an unsupervised algorithm capable of finding key features in given
unlabeled data set. FRANe is based on ideas from network reconstruction and
network analysis. FRANe performs better than state-of-the-art competitors, as
we empirically demonstrate on a large collection of benchmarks. Moreover, we
provide the time complexity analysis of FRANe further demonstrating its
scalability. Finally, FRANe offers as the result the interpretable relational
structures used to derive the feature importances.
- Abstract(参考訳): ラベルのないデータから学習する必要性は、現代の機械学習で高まっている。
このようなデータ中の最も重要な特徴を識別する教師なし特徴ランキングの手法が注目されているため、高スループット生物実験やレコメンダシステムのためのユーザベースの研究への応用も注目されている。
frane(feature ranking via attribute networks)を提案する。教師なしのアルゴリズムで、与えられたラベルなしデータセットで重要な特徴を見つけることができる。
FRANeはネットワーク再構成とネットワーク解析のアイデアに基づいている。
FRANeは、多数のベンチマークで実証的に示すように、最先端の競合製品よりもパフォーマンスがよい。
さらに,franeのスケーラビリティをさらに実証する時間的複雑性分析も提供する。
最後に、FRANeは機能の重要性を導き出すために使われる解釈可能な関係構造を提供する。
関連論文リスト
- Node Classification via Semantic-Structural Attention-Enhanced Graph Convolutional Networks [0.9463895540925061]
SSA-GCN(Semantic-structure attention-enhanced graph convolutional Network)を導入する。
グラフ構造をモデル化するだけでなく、分類性能を高めるために一般化されていない特徴を抽出する。
Cora と CiteSeer のデータセットに対する実験により,提案手法による性能改善が実証された。
論文 参考訳(メタデータ) (2024-03-24T06:28:54Z) - Factor-Assisted Federated Learning for Personalized Optimization with
Heterogeneous Data [6.024145412139383]
フェデレートラーニング(Federated Learning)は、データプライバシ保護を目的とした、新興の分散機械学習フレームワークである。
異なるクライアントのデータには、共通の知識とパーソナライズされた知識の両方が含まれている。
我々は、FedSplitと呼ばれる異種データのための、新しい個人化されたフェデレーション学習フレームワークを開発した。
論文 参考訳(メタデータ) (2023-12-07T13:05:47Z) - Federated Learning on Non-IID Graphs via Structural Knowledge Sharing [47.140441784462794]
フェデレーショングラフ学習(FGL)により、クライアントはプライベートデータを共有せずに、分散型で強力なGNNモデルをトレーニングできる。
我々はFedStarというFGLフレームワークを提案し、グラフ間学習タスクの共通基盤構造情報を抽出し、共有する。
クロスデータセットとクロスドメインのFGL設定の両方に対して広範な実験を行い、FedStarの優位性を実証した。
論文 参考訳(メタデータ) (2022-11-23T15:12:16Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Deep Fusion Clustering Network [38.540761683389135]
深層クラスタリングのための深層フュージョンクラスタリングネットワーク(DFCN)を提案する。
本ネットワークでは,オートエンコーダとグラフオートエンコーダが学習した表現を明示的にマージするために,相互依存学習に基づく構造化と属性情報融合(SAIF)モジュールを提案する。
6つのベンチマークデータセットの実験により、提案されたDFCNは最先端のディープクラスタリング手法よりも一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-12-15T09:37:59Z) - Network Classifiers Based on Social Learning [71.86764107527812]
空間と時間に対して独立に訓練された分類器を結合する新しい手法を提案する。
提案したアーキテクチャは、ラベルのないデータで時間とともに予測性能を改善することができる。
この戦略は高い確率で一貫した学習をもたらすことが示され、未訓練の分類器に対して頑健な構造が得られる。
論文 参考訳(メタデータ) (2020-10-23T11:18:20Z) - Federated Doubly Stochastic Kernel Learning for Vertically Partitioned
Data [93.76907759950608]
本稿では,垂直分割データに対する2倍のカーネル学習アルゴリズムを提案する。
本稿では,FDSKLがカーネルを扱う場合,最先端のフェデレーション学習手法よりもはるかに高速であることを示す。
論文 参考訳(メタデータ) (2020-08-14T05:46:56Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z) - Self-Challenging Improves Cross-Domain Generalization [81.99554996975372]
畳み込みニューラルネットワーク(CNN)は、ラベルと相関する支配的特徴を活性化することにより、画像分類を行う。
ドメイン外データに対するCNNの一般化を著しく改善する簡単なトレーニングである自己整合表現(RSC)を導入する。
RSCはトレーニングデータ上で活性化される主要な機能に対して反復的に挑戦し、ラベルと相関する残りの機能を有効にするようネットワークに強制する。
論文 参考訳(メタデータ) (2020-07-05T21:42:26Z) - Self-supervised Neural Architecture Search [41.07083436560303]
本稿では,ラベル付きデータを必要とせず,新たなネットワークモデルを見つけることができる自己教師型ニューラルネットワークサーチ(SSNAS)を提案する。
このような検索は,NASを用いた教師あり学習に匹敵する結果となり,自己教師あり学習の性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-07-03T05:09:30Z) - The OARF Benchmark Suite: Characterization and Implications for
Federated Learning Systems [41.90546696412147]
Open Application Repository for Federated Learning (OARF)は、フェデレートされた機械学習システムのためのベンチマークスイートである。
OARFは、画像、テキスト、構造化データの異なるデータサイロとして、公開データセットを使って、より現実的なアプリケーションシナリオを模倣します。
論文 参考訳(メタデータ) (2020-06-14T10:11:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。