A Volumetric Transformer for Accurate 3D Tumor Segmentation
- URL: http://arxiv.org/abs/2111.13300v1
- Date: Fri, 26 Nov 2021 02:49:51 GMT
- Title: A Volumetric Transformer for Accurate 3D Tumor Segmentation
- Authors: Himashi Peiris, Munawar Hayat, Zhaolin Chen, Gary Egan and Mehrtash
Harandi
- Abstract summary: This paper presents a Transformer architecture for medical image segmentation.
The Transformer has a U-shaped volumetric encoder-decoder design that processes the input voxels in their entirety.
We show that our model transfer better representations across-datasets and are robust against data corruptions.
- Score: 25.961484035609672
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a Transformer architecture for volumetric medical image
segmentation. Designing a computationally efficient Transformer architecture
for volumetric segmentation is a challenging task. It requires keeping a
complex balance in encoding local and global spatial cues, and preserving
information along all axes of the volumetric data. The proposed volumetric
Transformer has a U-shaped encoder-decoder design that processes the input
voxels in their entirety. Our encoder has two consecutive self-attention layers
to simultaneously encode local and global cues, and our decoder has novel
parallel shifted window based self and cross attention blocks to capture fine
details for boundary refinement by subsuming Fourier position encoding. Our
proposed design choices result in a computationally efficient architecture,
which demonstrates promising results on Brain Tumor Segmentation (BraTS) 2021,
and Medical Segmentation Decathlon (Pancreas and Liver) datasets for tumor
segmentation. We further show that the representations learned by our model
transfer better across-datasets and are robust against data corruptions.
\href{https://github.com/himashi92/VT-UNet}{Our code implementation is publicly
available}.
Related papers
- ParaTransCNN: Parallelized TransCNN Encoder for Medical Image
Segmentation [7.955518153976858]
We propose an advanced 2D feature extraction method by combining the convolutional neural network and Transformer architectures.
Our method is shown with better segmentation accuracy, especially on small organs.
arXiv Detail & Related papers (2024-01-27T05:58:36Z) - CATS v2: Hybrid encoders for robust medical segmentation [12.194439938007672]
Convolutional Neural Networks (CNNs) have exhibited strong performance in medical image segmentation tasks.
However, due to the limited field of view of convolution kernel, it is hard for CNNs to fully represent global information.
We propose CATS v2 with hybrid encoders, which better leverage both local and global information.
arXiv Detail & Related papers (2023-08-11T20:21:54Z) - Focused Decoding Enables 3D Anatomical Detection by Transformers [64.36530874341666]
We propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder.
Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view.
We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights.
arXiv Detail & Related papers (2022-07-21T22:17:21Z) - MISSU: 3D Medical Image Segmentation via Self-distilling TransUNet [55.16833099336073]
We propose to self-distill a Transformer-based UNet for medical image segmentation.
It simultaneously learns global semantic information and local spatial-detailed features.
Our MISSU achieves the best performance over previous state-of-the-art methods.
arXiv Detail & Related papers (2022-06-02T07:38:53Z) - Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation [63.46694853953092]
Swin-Unet is an Unet-like pure Transformer for medical image segmentation.
tokenized image patches are fed into the Transformer-based U-shaped decoder-Decoder architecture.
arXiv Detail & Related papers (2021-05-12T09:30:26Z) - UNETR: Transformers for 3D Medical Image Segmentation [8.59571749685388]
We introduce a novel architecture, dubbed as UNEt TRansformers (UNETR), that utilizes a pure transformer as the encoder to learn sequence representations of the input volume.
We have extensively validated the performance of our proposed model across different imaging modalities.
arXiv Detail & Related papers (2021-03-18T20:17:15Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
Medical image segmentation is an essential prerequisite for developing healthcare systems.
On various medical image segmentation tasks, the u-shaped architecture, also known as U-Net, has become the de-facto standard.
We propose TransUNet, which merits both Transformers and U-Net, as a strong alternative for medical image segmentation.
arXiv Detail & Related papers (2021-02-08T16:10:50Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
We treat semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer to encode an image as a sequence of patches.
With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR)
SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes.
arXiv Detail & Related papers (2020-12-31T18:55:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.