Jointly Learning Agent and Lane Information for Multimodal Trajectory
Prediction
- URL: http://arxiv.org/abs/2111.13350v1
- Date: Fri, 26 Nov 2021 08:02:06 GMT
- Title: Jointly Learning Agent and Lane Information for Multimodal Trajectory
Prediction
- Authors: Jie Wang, Caili Guo, Minan Guo and Jiujiu Chen
- Abstract summary: We propose a staged network that Jointly learning Agent and Lane information for Multimodal Trajectory Prediction.
Experiments conducted on the public Argoverse dataset demonstrate that JAL-MTP significantly outperforms the existing models in both quantitative and qualitative.
- Score: 9.602388354570111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the plausible future trajectories of nearby agents is a core
challenge for the safety of Autonomous Vehicles and it mainly depends on two
external cues: the dynamic neighbor agents and static scene context. Recent
approaches have made great progress in characterizing the two cues separately.
However, they ignore the correlation between the two cues and most of them are
difficult to achieve map-adaptive prediction. In this paper, we use lane as
scene data and propose a staged network that Jointly learning Agent and Lane
information for Multimodal Trajectory Prediction (JAL-MTP). JAL-MTP use a
Social to Lane (S2L) module to jointly represent the static lane and the
dynamic motion of the neighboring agents as instance-level lane, a Recurrent
Lane Attention (RLA) mechanism for utilizing the instance-level lanes to
predict the map-adaptive future trajectories and two selectors to identify the
typical and reasonable trajectories. The experiments conducted on the public
Argoverse dataset demonstrate that JAL-MTP significantly outperforms the
existing models in both quantitative and qualitative.
Related papers
- Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
Motion TRansformer (MTR) models motion prediction as the joint optimization of global intention localization and local movement refinement.
MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges.
arXiv Detail & Related papers (2022-09-27T16:23:14Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - LaPred: Lane-Aware Prediction of Multi-Modal Future Trajectories of
Dynamic Agents [10.869902339190949]
We propose a novel prediction model, referred to as the lane-aware prediction (LaPred) network.
LaPred uses the instance-level lane entities extracted from a semantic map to predict the multi-modal future trajectories.
The experiments conducted on the public nuScenes and Argoverse dataset demonstrate that the proposed LaPred method significantly outperforms the existing prediction models.
arXiv Detail & Related papers (2021-04-01T04:33:36Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
We focus on decentralized navigation among multiple non-communicating rational agents at street intersections without traffic signs or signals.
Our key insight is that the geometric structure of the intersection and the incentive of agents to move efficiently and avoid collisions (rationality) reduces the space of likely behaviors.
We design Multiple Topologies Prediction (MTP), a data-driven trajectory-prediction mechanism that reconstructs trajectory representations of high-likelihood modes in multiagent intersection scenes.
arXiv Detail & Related papers (2020-11-08T02:56:42Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Diverse and Admissible Trajectory Forecasting through Multimodal Context
Understanding [46.52703817997932]
Multi-agent trajectory forecasting in autonomous driving requires an agent to accurately anticipate the behaviors of the surrounding vehicles and pedestrians.
We propose a model that synthesizes multiple input signals from the multimodal world.
We show a significant performance improvement over previous state-of-the-art methods.
arXiv Detail & Related papers (2020-03-06T13:59:39Z) - MCENET: Multi-Context Encoder Network for Homogeneous Agent Trajectory
Prediction in Mixed Traffic [35.22312783822563]
Trajectory prediction in urban mixedtraffic zones is critical for many intelligent transportation systems.
We propose an approach named Multi-Context Network (MCENET) that is trained by encoding both past and future scene context.
In inference time, we combine the past context and motion information of the target agent with samplings of the latent variables to predict multiple realistic trajectories.
arXiv Detail & Related papers (2020-02-14T11:04:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.