Single-state semiquantum private comparison based on Bell states
- URL: http://arxiv.org/abs/2111.13819v3
- Date: Thu, 15 Dec 2022 02:15:03 GMT
- Title: Single-state semiquantum private comparison based on Bell states
- Authors: Mao-Jie Geng, Ying Chen, Tian-Jie Xu, Tian-Yu Ye
- Abstract summary: novel semiquantum private comparison (SQPC) protocol based on single kind of Bell states is proposed.
TP is allowed to misbehave on her own but cannot conspire with anyone else.
- Score: 3.312385039704987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, a novel semiquantum private comparison (SQPC) protocol based
on single kind of Bell states is proposed, which allows two classical parties
to judge the equality of their private inputs securely and correctly under the
help of a semi-honest third party (TP) who possesses complete quantum
capabilities. TP is allowed to misbehave on her own but cannot conspire with
anyone else. Our protocol needs none of unitary operations, quantum
entanglement swapping or the reordering operations. Moreover, our protocol only
needs to prepare single kind of Bell states as initial quantum resource.
Detailed security analysis turns out that our protocol is secure against
various outside and participant attacks. Compared with most of the existing
SQPC protocols based on Bell states, our protocol is more feasible in practice.
Related papers
- Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - Semiquantum private comparison via cavity QED [8.62421338326666]
We design the first semiquantum private comparison (SQPC) protocol which is realized via cavity quantum electrodynamics (QED)
With the help of a semi-honest third party (TP), the proposed protocol can compare the equality of private inputs from two semiquantum parties who only have limited quantum capabilities.
arXiv Detail & Related papers (2023-09-23T02:02:21Z) - A Feasible Semi-quantum Private Comparison Based on Entanglement
Swapping of Bell States [5.548873288570182]
We propose a feasible semi-quantum private comparison protocol based on entanglement swapping of Bell states.
Security analysis shows that our protocol is resilient to both external and internal attacks.
Our proposed approach showcases the potential applications of entanglement swapping in the field of semi-quantum cryptography.
arXiv Detail & Related papers (2023-05-12T13:28:44Z) - A novel multi-party semiquantum private comparison protocol of size
relationship with d-dimensional single-particle states [0.0]
This protocol requires the help of one quantum third party (TP) and one classical TP.
Neither quantum entanglement swapping nor unitary operations are necessary for implementing this protocol.
arXiv Detail & Related papers (2022-08-30T16:35:55Z) - Conference key agreement in a quantum network [67.410870290301]
Quantum conference key agreement (QCKA) allows multiple users to establish a secure key from a shared multi-partite entangled state.
In a quantum network, this protocol can be efficiently implemented using a single copy of a N-qubit Greenberger-Horne-Zeilinger (GHZ) state to distil a secure N-user conference key bit.
arXiv Detail & Related papers (2022-07-04T18:00:07Z) - Measure-resend semi-quantum private comparison without entanglement [0.0]
Our protocol allows two classical users to compare the equality of their private secrets under the help of a quantum third party.
The quantum TP is semi-honest in the sense that he is allowed to misbehave on his own but cannot conspire with either of users.
arXiv Detail & Related papers (2022-05-13T00:43:05Z) - Semiquantum private comparison based on Bell states without quantum measurements from the classical user [4.4053348026380235]
We propose a novel semiquantum private comparison protocol based on Bell states.
TP is assumed to be semi-honest in the sense that she may take all possible attacks to steal users' private inputs except conspiring with anyone.
Our protocol can take advantage over previous SQPC protocols based on Bell states in qubit efficiency.
arXiv Detail & Related papers (2022-05-10T14:32:53Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Counterfactual Concealed Telecomputation [22.577469136318836]
We devise a distributed blind quantum computation protocol to perform a universal two-qubit controlled unitary operation.
It is shown that the protocol is valid for general input states and that single-qubit unitary teleportation is a special case of CCT.
The protocol becomes deterministic with simplified circuit implementation if the initial composite state of Alice and Bob is a Bell-type state.
arXiv Detail & Related papers (2020-12-09T10:07:58Z) - Secure Two-Party Quantum Computation Over Classical Channels [63.97763079214294]
We consider the setting where the two parties (a classical Alice and a quantum Bob) can communicate only via a classical channel.
We show that it is in general impossible to realize a two-party quantum functionality with black-box simulation in the case of malicious quantum adversaries.
We provide a compiler that takes as input a classical proof of quantum knowledge (PoQK) protocol for a QMA relation R and outputs a zero-knowledge PoQK for R that can be verified by classical parties.
arXiv Detail & Related papers (2020-10-15T17:55:31Z) - Security Limitations of Classical-Client Delegated Quantum Computing [54.28005879611532]
A client remotely prepares a quantum state using a classical channel.
Privacy loss incurred by employing $RSP_CC$ as a sub-module is unclear.
We show that a specific $RSP_CC$ protocol can replace the quantum channel at least in some contexts.
arXiv Detail & Related papers (2020-07-03T13:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.