論文の概要: Leveraging Unsupervised Learning to Summarize APIs Discussed in Stack
Overflow
- arxiv url: http://arxiv.org/abs/2111.13962v1
- Date: Sat, 27 Nov 2021 18:49:51 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 18:34:37.210720
- Title: Leveraging Unsupervised Learning to Summarize APIs Discussed in Stack
Overflow
- Title(参考訳): stack overflowで議論されたapiを要約するために教師なし学習を活用する
- Authors: AmirHossein Naghshzan, Latifa Guerrouj, Olga Baysal
- Abstract要約: 本稿では,Stack Overflowで議論されているAndroid APIメソッドを要約する手法を提案する。
提案手法では,APIメソッドの名称を入力として,そのAPIメソッドに関するStack Overflowの議論に基づいて,自然言語の要約を生成する。
我々は16人のAndroid開発者が自動生成された要約の品質を評価し、それらを公式のAndroidドキュメントと比較する調査を実施した。
- 参考スコア(独自算出の注目度): 1.8047694351309207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated source code summarization is a task that generates summarized
information about the purpose, usage, and--or implementation of methods and
classes to support understanding of these code entities. Multiple approaches
and techniques have been proposed for supervised and unsupervised learning in
code summarization, however, they were mostly focused on generating a summary
for a piece of code. In addition, very few works have leveraged unofficial
documentation. This paper proposes an automatic and novel approach for
summarizing Android API methods discussed in Stack Overflow that we consider as
unofficial documentation in this research. Our approach takes the API method's
name as an input and generates a natural language summary based on Stack
Overflow discussions of that API method. We have conducted a survey that
involves 16 Android developers to evaluate the quality of our automatically
generated summaries and compare them with the official Android documentation.
Our results demonstrate that while developers find the official documentation
more useful in general, the generated summaries are also competitive, in
particular for offering implementation details, and can be used as a
complementary source for guiding developers in software development and
maintenance tasks.
- Abstract(参考訳): ソースコードの自動要約は、これらのコードエンティティの理解を支援するために、メソッドやクラスの目的、使用、実装に関する要約情報を生成するタスクである。
コード要約における教師付き学習と教師なし学習のために、複数のアプローチとテクニックが提案されているが、それらは主にコードの要約の作成に集中していた。
さらに、非公式な文書を活用できる作品はほとんどない。
本稿では,stack overflowで議論されているandroid apiメソッドを自動的かつ新規に要約する手法を提案する。
提案手法では,APIメソッドの名称を入力として,そのAPIメソッドに関するStack Overflowの議論に基づいて自然言語要約を生成する。
我々は16人のAndroid開発者が自動生成された要約の品質を評価し、それらを公式のAndroidドキュメントと比較する調査を実施した。
我々の結果は、開発者は公式のドキュメントが一般的により有用であるのに対して、生成した要約は特に実装の詳細を提供するために競争力があり、ソフトウェア開発やメンテナンスタスクで開発者を導くための補完的なソースとして利用できます。
関連論文リスト
- Revolutionizing API Documentation through Summarization [0.0]
APIドキュメンテーションは長く、ナビゲートが難しいため、Stack Overflowのような非公式なソースを探す必要がある。
BERTopicと抽出要約を用いて,簡潔で情報性の高いAPI要約を自動的に生成する。
これらの要約には、Stack Overflowに関する豊富な知識から得られた、一般的な使用法、一般的な開発者問題、潜在的なソリューションといった重要な洞察が含まれている。
論文 参考訳(メタデータ) (2024-01-21T01:18:08Z) - Leveraging Deep Learning for Abstractive Code Summarization of
Unofficial Documentation [1.1816942730023887]
本稿では,StackOverflowで議論されているAPIの要約を生成するために,BARTアルゴリズムを用いた自動アプローチを提案する。
ROUGEとBLEUのメトリクスを用いて,人間生成サマリーのオラクルを構築し,それに対するアプローチを評価した。
その結果, ディープラーニングアルゴリズムを用いることで, 要約の質が向上し, 精度が平均で57パーセント向上することが示唆された。
論文 参考訳(メタデータ) (2023-10-23T15:10:37Z) - Enhancing API Documentation through BERTopic Modeling and Summarization [0.0]
本稿では、アプリケーションプログラミングインタフェース(API)ドキュメントの解釈の複雑さに焦点を当てる。
公式APIドキュメンテーションは、開発者にとって最も重要な情報ソースであるが、広くなり、ユーザフレンドリ性に欠けることが多い。
我々の新しいアプローチは、トピックモデリングと自然言語処理(NLP)にBERTopicの長所を利用して、APIドキュメントの要約を自動的に生成する。
論文 参考訳(メタデータ) (2023-08-17T15:57:12Z) - Private-Library-Oriented Code Generation with Large Language Models [52.73999698194344]
本稿では,大規模言語モデル(LLM)をプライベートライブラリのコード生成に活用することに焦点を当てる。
プログラマがプライベートコードを書く過程をエミュレートする新しいフレームワークを提案する。
TorchDataEval、TorchDataComplexEval、MonkeyEval、BeatNumEvalの4つのプライベートライブラリベンチマークを作成しました。
論文 参考訳(メタデータ) (2023-07-28T07:43:13Z) - CodeExp: Explanatory Code Document Generation [94.43677536210465]
既存のコード・トゥ・テキスト生成モデルは、コードの高レベルな要約のみを生成する。
我々は、コードのための高品質な説明記述の基準を特定するために、人間の研究を行う。
タスクのための多段階微調整戦略とベースラインモデルを提案する。
論文 参考訳(メタデータ) (2022-11-25T18:05:44Z) - Towards Code Summarization of APIs Based on Unofficial Documentation
Using NLP Techniques [0.0]
場合によっては、公式のドキュメントは必要な情報を得るための効率的な方法ではありません。
NLP技術を用いた非公式なドキュメンテーションを利用して,APIやメソッドの要約を生成する手法を提案する。
論文 参考訳(メタデータ) (2022-08-12T15:07:30Z) - ReACC: A Retrieval-Augmented Code Completion Framework [53.49707123661763]
本稿では,語彙のコピーと類似したセマンティクスを持つコード参照の両方を検索により活用する検索拡張コード補完フレームワークを提案する。
我々は,Python および Java プログラミング言語のコード補完タスクにおけるアプローチを評価し,CodeXGLUE ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-03-15T08:25:08Z) - Exploiting Method Names to Improve Code Summarization: A Deliberation
Multi-Task Learning Approach [5.577102440028882]
コード要約のための新しいマルチタスク学習(MTL)アプローチを設計する。
まず,メソッド名の生成と情報性予測のタスクを紹介する。
新たな2パス審議機構をmtlアーキテクチャに組み込んで、より一貫性のある中間状態を生成します。
論文 参考訳(メタデータ) (2021-03-21T17:52:21Z) - Retrieve, Program, Repeat: Complex Knowledge Base Question Answering via
Alternate Meta-learning [56.771557756836906]
本稿では,弱い監督からプログラマと交互に検索モデルを自動的に学習する手法を提案する。
本システムでは,知識ベースに対する複雑な質問応答を行う大規模タスクにおいて,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-10-29T18:28:16Z) - Knowledge-Aware Procedural Text Understanding with Multi-Stage Training [110.93934567725826]
本稿では,このような文書の理解とプロセス中のエンティティの状態や場所の追跡を目的とした手続き的テキスト理解の課題に焦点をあてる。
常識的推論の難しさとデータ不足という2つの課題はまだ未解決のままである。
我々は、複数の外部知識を効果的に活用する、KnOwledge-Aware ProceduraL text understAnding (KOALA)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-28T10:28:40Z) - A Methodology for Creating AI FactSheets [67.65802440158753]
本稿では、FactSheetsと呼ぶAIドキュメントの形式を作るための方法論について述べる。
方法論の各ステップの中で、検討すべき問題と探求すべき質問について説明する。
この方法論は、透明なAIドキュメントの採用を加速する。
論文 参考訳(メタデータ) (2020-06-24T15:08:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。