Factor-augmented tree ensembles
- URL: http://arxiv.org/abs/2111.14000v6
- Date: Mon, 12 Jun 2023 19:37:37 GMT
- Title: Factor-augmented tree ensembles
- Authors: Filippo Pellegrino
- Abstract summary: This manuscript proposes to extend the information set of time-series regression trees with latent stationary factors extracted via state-space methods.
It allows to handle predictors that exhibit measurement error, non-stationary trends, seasonality and/or irregularities such as missing observations.
Empirically, ensembles of these factor-augmented trees provide a reliable approach for macro-finance problems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This manuscript proposes to extend the information set of time-series
regression trees with latent stationary factors extracted via state-space
methods. In doing so, this approach generalises time-series regression trees on
two dimensions. First, it allows to handle predictors that exhibit measurement
error, non-stationary trends, seasonality and/or irregularities such as missing
observations. Second, it gives a transparent way for using domain-specific
theory to inform time-series regression trees. Empirically, ensembles of these
factor-augmented trees provide a reliable approach for macro-finance problems.
This article highlights it focussing on the lead-lag effect between equity
volatility and the business cycle in the United States.
Related papers
- Variational phylogenetic inference with products over bipartitions [48.2982114295171]
We present a novel variational family based on coalescent times of a single-linkage clustering and derive a closed-form density of the resulting distribution over trees.
Our method performs inference over all of tree space, it does not require any Markov chain Monte Carlo subroutines, and our variational family is differentiable.
arXiv Detail & Related papers (2025-02-21T00:06:57Z) - Extending Explainable Ensemble Trees (E2Tree) to regression contexts [1.5186937600119894]
E2Tree is a novel methodology for explaining random forests.
It accounts for the effects of predictor variables on the response.
It also accounts for associations between the predictor variables through the computation and use of dissimilarity measures.
arXiv Detail & Related papers (2024-09-10T11:42:55Z) - Ensembles of Probabilistic Regression Trees [46.53457774230618]
Tree-based ensemble methods have been successfully used for regression problems in many applications and research studies.
We study ensemble versions of probabilisticregression trees that provide smooth approximations of the objective function by assigningeach observation to each region with respect to a probability distribution.
arXiv Detail & Related papers (2024-06-20T06:51:51Z) - A Study of Posterior Stability for Time-Series Latent Diffusion [59.41969496514184]
We first show that posterior collapse will reduce latent diffusion to a variational autoencoder (VAE), making it less expressive.
We then introduce a principled method: dependency measure, that quantifies the sensitivity of a recurrent decoder to input variables.
Building on our theoretical and empirical studies, we introduce a new framework that extends latent diffusion and has a stable posterior.
arXiv Detail & Related papers (2024-05-22T21:54:12Z) - Forecasting with Hyper-Trees [50.72190208487953]
Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
arXiv Detail & Related papers (2024-05-13T15:22:15Z) - Why do Random Forests Work? Understanding Tree Ensembles as
Self-Regularizing Adaptive Smoothers [68.76846801719095]
We argue that the current high-level dichotomy into bias- and variance-reduction prevalent in statistics is insufficient to understand tree ensembles.
We show that forests can improve upon trees by three distinct mechanisms that are usually implicitly entangled.
arXiv Detail & Related papers (2024-02-02T15:36:43Z) - Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Prediction Algorithms Achieving Bayesian Decision Theoretical Optimality
Based on Decision Trees as Data Observation Processes [1.2774526936067927]
This paper uses trees to represent data observation processes behind given data.
We derive the statistically optimal prediction, which is robust against overfitting.
We solve this by a Markov chain Monte Carlo method, whose step size is adaptively tuned according to a posterior distribution for the trees.
arXiv Detail & Related papers (2023-06-12T12:14:57Z) - SETAR-Tree: A Novel and Accurate Tree Algorithm for Global Time Series
Forecasting [7.206754802573034]
In this paper, we explore the close connections between TAR models and regression trees.
We introduce a new forecasting-specific tree algorithm that trains global Pooled Regression (PR) models in the leaves.
In our evaluation, the proposed tree and forest models are able to achieve significantly higher accuracy than a set of state-of-the-art tree-based algorithms.
arXiv Detail & Related papers (2022-11-16T04:30:42Z) - Lassoed Tree Boosting [53.56229983630983]
We prove that a gradient boosted tree algorithm with early stopping faster than $n-1/4$ L2 convergence in the large nonparametric space of cadlag functions of bounded sectional variation.
Our convergence proofs are based on a novel, general theorem on early stopping with empirical loss minimizers of nested Donsker classes.
arXiv Detail & Related papers (2022-05-22T00:34:41Z) - Large Scale Prediction with Decision Trees [9.917147243076645]
This paper shows that decision trees constructed with Classification and Regression Trees (CART) and C4.5 methodology are consistent for regression and classification tasks.
A key step in the analysis is the establishment of an oracle inequality, which allows for a precise characterization of the goodness-of-fit and complexity tradeoff for a mis-specified model.
arXiv Detail & Related papers (2021-04-28T16:59:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.