Forecasting with Hyper-Trees
- URL: http://arxiv.org/abs/2405.07836v3
- Date: Mon, 14 Oct 2024 10:26:22 GMT
- Title: Forecasting with Hyper-Trees
- Authors: Alexander März, Kashif Rasul,
- Abstract summary: Hyper-Trees are designed to learn the parameters of time series models.
By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity.
In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters.
- Score: 50.72190208487953
- License:
- Abstract: We introduce the concept of Hyper-Trees and offer a new direction in applying tree-based models to time series data. Unlike conventional applications of decision trees that forecast time series directly, Hyper-Trees are designed to learn the parameters of time series models. Our framework combines the effectiveness of gradient boosted trees on tabular data with the advantages of established time series models, thereby naturally inducing a time series inductive bias to tree models. By relating the parameters of a target time series model to features, Hyper-Trees also address the issue of parameter non-stationarity. To resolve the inherent scaling issue of boosted trees when estimating a large number of target model parameters, we combine decision trees and neural networks within a unified framework. In this novel approach, the trees first generate informative representations from the input features, which a shallow network then maps to the target model parameters. With our research, we aim to explore the effectiveness of Hyper-Trees across various forecasting scenarios and to extend the application of gradient boosted trees outside their conventional use in time series modeling.
Related papers
- GrootVL: Tree Topology is All You Need in State Space Model [66.36757400689281]
GrootVL is a versatile multimodal framework that can be applied to both visual and textual tasks.
Our method significantly outperforms existing structured state space models on image classification, object detection and segmentation.
By fine-tuning large language models, our approach achieves consistent improvements in multiple textual tasks at minor training cost.
arXiv Detail & Related papers (2024-06-04T15:09:29Z) - Tree-based Learning for High-Fidelity Prediction of Chaos [0.2999888908665658]
TreeDOX is a tree-based approach to model-free forecasting of chaotic systems.
It uses time delay overembedding as explicit short-term memory and Extra-Trees Regressors to perform feature reduction and forecasting.
We demonstrate the state-of-the-art performance of TreeDOX using the Henon map, Lorenz and Kuramoto-Sivashinsky systems, and the real-world Southern Oscillation Index.
arXiv Detail & Related papers (2024-03-12T01:16:29Z) - Explainable Adaptive Tree-based Model Selection for Time Series
Forecasting [1.0515439489916734]
Tree-based models have been successfully applied to a wide variety of tasks, including time series forecasting.
Many of them suffer from the overfitting problem, which limits their application in real-world decision-making.
We propose a novel method for the online selection of tree-based models using the TreeSHAP explainability method in the task of time series forecasting.
arXiv Detail & Related papers (2024-01-02T09:40:02Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
We develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior.
The proposed model is effective in yielding a shallow interpretable tree approxing the tree-ensemble decision function.
arXiv Detail & Related papers (2023-02-15T10:43:31Z) - SETAR-Tree: A Novel and Accurate Tree Algorithm for Global Time Series
Forecasting [7.206754802573034]
In this paper, we explore the close connections between TAR models and regression trees.
We introduce a new forecasting-specific tree algorithm that trains global Pooled Regression (PR) models in the leaves.
In our evaluation, the proposed tree and forest models are able to achieve significantly higher accuracy than a set of state-of-the-art tree-based algorithms.
arXiv Detail & Related papers (2022-11-16T04:30:42Z) - TreeDRNet:A Robust Deep Model for Long Term Time Series Forecasting [24.832101846728925]
We propose a novel neural network architecture, called TreeDRNet, for more effective long-term forecasting.
Inspired by robust regression, we introduce doubly residual link structure to make prediction more robust.
Our empirical studies show that TreeDRNet is significantly more effective than state-of-the-art methods.
arXiv Detail & Related papers (2022-06-24T06:53:11Z) - Social Interpretable Tree for Pedestrian Trajectory Prediction [75.81745697967608]
We propose a tree-based method, termed as Social Interpretable Tree (SIT), to address this multi-modal prediction task.
A path in the tree from the root to leaf represents an individual possible future trajectory.
Despite the hand-crafted tree, the experimental results on ETH-UCY and Stanford Drone datasets demonstrate that our method is capable of matching or exceeding the performance of state-of-the-art methods.
arXiv Detail & Related papers (2022-05-26T12:18:44Z) - Complex Event Forecasting with Prediction Suffix Trees: Extended
Technical Report [70.7321040534471]
Complex Event Recognition (CER) systems have become popular in the past two decades due to their ability to "instantly" detect patterns on real-time streams of events.
There is a lack of methods for forecasting when a pattern might occur before such an occurrence is actually detected by a CER engine.
We present a formal framework that attempts to address the issue of Complex Event Forecasting.
arXiv Detail & Related papers (2021-09-01T09:52:31Z) - Growing Deep Forests Efficiently with Soft Routing and Learned
Connectivity [79.83903179393164]
This paper further extends the deep forest idea in several important aspects.
We employ a probabilistic tree whose nodes make probabilistic routing decisions, a.k.a., soft routing, rather than hard binary decisions.
Experiments on the MNIST dataset demonstrate that our empowered deep forests can achieve better or comparable performance than [1],[3].
arXiv Detail & Related papers (2020-12-29T18:05:05Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.