論文の概要: Evaluating Generalization and Transfer Capacity of Multi-Agent
Reinforcement Learning Across Variable Number of Agents
- arxiv url: http://arxiv.org/abs/2111.14177v1
- Date: Sun, 28 Nov 2021 15:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 08:29:47.412807
- Title: Evaluating Generalization and Transfer Capacity of Multi-Agent
Reinforcement Learning Across Variable Number of Agents
- Title(参考訳): 多様なエージェント間のマルチエージェント強化学習の一般化と伝達能力の評価
- Authors: Bengisu Guresti, Nazim Kemal Ure
- Abstract要約: マルチエージェント強化学習(MARL)問題は、タスクを解決するためにエージェント間の協調を必要とすることが多い。
中央集権化と分散化は、MARLにおける協力のための2つのアプローチである。
分散実行パラダイムを用いた集中型トレーニングを採用し, エージェント数に応じて, 学習モデルの一般化と伝達能力について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi-agent Reinforcement Learning (MARL) problems often require cooperation
among agents in order to solve a task. Centralization and decentralization are
two approaches used for cooperation in MARL. While fully decentralized methods
are prone to converge to suboptimal solutions due to partial observability and
nonstationarity, the methods involving centralization suffer from scalability
limitations and lazy agent problem. Centralized training decentralized
execution paradigm brings out the best of these two approaches; however,
centralized training still has an upper limit of scalability not only for
acquired coordination performance but also for model size and training time. In
this work, we adopt the centralized training with decentralized execution
paradigm and investigate the generalization and transfer capacity of the
trained models across variable number of agents. This capacity is assessed by
training variable number of agents in a specific MARL problem and then
performing greedy evaluations with variable number of agents for each training
configuration. Thus, we analyze the evaluation performance for each combination
of agent count for training versus evaluation. We perform experimental
evaluations on predator prey and traffic junction environments and demonstrate
that it is possible to obtain similar or higher evaluation performance by
training with less agents. We conclude that optimal number of agents to perform
training may differ from the target number of agents and argue that transfer
across large number of agents can be a more efficient solution to scaling up
than directly increasing number of agents during training.
- Abstract(参考訳): マルチエージェント強化学習(MARL)問題は、タスクを解決するためにエージェント間の協調を必要とすることが多い。
中央集権化と分散化は、MARLにおける協力のための2つのアプローチである。
完全分散化メソッドは部分可観測性と非定常性のため、サブ最適ソリューションに収束しがちであるが、集中化を伴うメソッドはスケーラビリティの制限と遅延エージェントの問題に苦しむ。
集中型トレーニング 分散実行パラダイムは、これら2つのアプローチを最大限に活用する。しかしながら、集中型トレーニングは、獲得したコーディネーションパフォーマンスだけでなく、モデルのサイズとトレーニング時間についても、スケーラビリティの上限を依然として持っている。
本研究では,分散実行パラダイムを用いた集中型トレーニングを採用し,訓練モデルの一般化と伝達能力について,エージェント数にまたがって検討する。
このキャパシティは、特定のMARL問題におけるエージェントの可変数をトレーニングし、各トレーニング設定ごとにエージェントの可変数をグリージー評価することで評価される。
そこで我々は,各エージェント数の組み合わせによる評価性能を,トレーニングと評価の比較で分析した。
本研究は,捕食者用獲物およびトラヒックジャンクション環境における実験評価を行い,より少ないエージェントで訓練することで,類似または高い評価性能が得られることを示す。
トレーニングを行うエージェントの最適数は,対象エージェントの数と異なり,トレーニング中のエージェント数を直接増加させるよりも,多数のエージェント間での転送がスケールアップの効率的な解決策になる,という結論に達した。
関連論文リスト
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
MARL(Multi-agent Reinforcement Learning)は、シーケンシャルな意思決定と制御タスクの鍵となるフレームワークである。
これらのシステムを現実のシナリオに展開するには、分散トレーニング、多様なエージェントセット、そして頻繁な環境報酬信号から学ぶ必要がある。
我々は,新しいグラフニューラルネットワーク(GNN)に基づく本質的なモチベーションを利用して,異種エージェントポリシーの学習を容易にするCoHetアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-12T21:38:40Z) - Quantifying Agent Interaction in Multi-agent Reinforcement Learning for
Cost-efficient Generalization [63.554226552130054]
マルチエージェント強化学習(MARL)における一般化の課題
エージェントが未確認のコプレイヤーに影響される程度は、エージェントのポリシーと特定のシナリオに依存する。
与えられたシナリオと環境におけるエージェント間の相互作用強度を定量化する指標であるLoI(Level of Influence)を提示する。
論文 参考訳(メタデータ) (2023-10-11T06:09:26Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgentは、大規模な言語モデルを利用してプロアクティブエージェントを生成する新しいフレームワークである。
ProAgentは現状を分析し、チームメイトの意図を観察から推測することができる。
ProAgentは高度なモジュール化と解釈可能性を示し、様々な調整シナリオに容易に統合できる。
論文 参考訳(メタデータ) (2023-08-22T10:36:56Z) - A Variational Approach to Mutual Information-Based Coordination for
Multi-Agent Reinforcement Learning [17.893310647034188]
マルチエージェント強化学習のための新しい相互情報フレームワークを提案する。
導出された下界を最大化するためにポリシーを適用することで,多エージェントアクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクタ-アクティベートアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-01T12:21:30Z) - Taming Multi-Agent Reinforcement Learning with Estimator Variance
Reduction [12.94372063457462]
分散実行(CT-DE)による集中トレーニングは、多くの主要なマルチエージェント強化学習(MARL)アルゴリズムの基礎となっている。
特定の状態における共同行動の単一のサンプルから学ぶことに依存しているため、これは重大な欠点に悩まされる。
本稿では,アクター・クリティカルなMARL法に対応する拡張ツールを提案する。
論文 参考訳(メタデータ) (2022-09-02T13:44:00Z) - Scalable Multi-Agent Model-Based Reinforcement Learning [1.95804735329484]
我々は,モデルベース強化学習(MBRL)を用いて協調環境における集中型トレーニングをさらに活用するMAMBAという新しい手法を提案する。
エージェント間のコミュニケーションは、実行期間中に各エージェントのワールドモデルを維持するのに十分であり、一方、仮想ロールアウトはトレーニングに使用でき、環境と対話する必要がなくなる。
論文 参考訳(メタデータ) (2022-05-25T08:35:00Z) - DSDF: An approach to handle stochastic agents in collaborative
multi-agent reinforcement learning [0.0]
ロボットの機能低下や老化によって引き起こされるエージェントの真偽が、協調の不確実性にどのように寄与するかを示す。
DSDFは不確実性に応じてエージェントの割引係数を調整し,その値を用いて個々のエージェントのユーティリティネットワークを更新する。
論文 参考訳(メタデータ) (2021-09-14T12:02:28Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
我々はUniversal Value Exploration(UneVEn)と呼ばれる新しいMARLアプローチを提案する。
UneVEnは、一連の関連するタスクと、普遍的な後継機能の線形分解を同時に学習する。
一連の探索ゲームにおける実証的な結果、エージェント間の重要な調整を必要とする協調捕食・捕食作業への挑戦、およびStarCraft IIのマイクロマネジメントベンチマークは、UneVEnが他の最先端のMARLメソッドが失敗するタスクを解決できることを示している。
論文 参考訳(メタデータ) (2020-10-06T19:08:47Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
分散マルチエージェント強化学習アルゴリズムは複雑なアプリケーションでは実践的でないことがある。
本稿では,大規模で汎用的なマルチエージェント設定を扱える,柔軟な完全分散型アクター批判型MARLフレームワークを提案する。
当社のフレームワークは,大規模環境におけるスケーラビリティと安定性を実現し,情報伝達を低減できる。
論文 参考訳(メタデータ) (2020-04-17T14:56:29Z) - Scalable Multi-Agent Inverse Reinforcement Learning via
Actor-Attention-Critic [54.2180984002807]
マルチエージェント逆逆強化学習 (MA-AIRL) は, 単エージェントAIRLをマルチエージェント問題に適用する最近の手法である。
本稿では,従来の手法よりもサンプル効率が高く,スケーラブルなマルチエージェント逆RLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-02-24T20:30:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。