SPATL: Salient Parameter Aggregation and Transfer Learning for
Heterogeneous Clients in Federated Learning
- URL: http://arxiv.org/abs/2111.14345v1
- Date: Mon, 29 Nov 2021 06:28:05 GMT
- Title: SPATL: Salient Parameter Aggregation and Transfer Learning for
Heterogeneous Clients in Federated Learning
- Authors: Sixing Yu, Phuong Nguyen, Waqwoya Abebe, Ali Anwar, Ali Jannesari
- Abstract summary: Efficient federated learning is one of the key challenges for training and deploying AI models on edge devices.
Maintaining data privacy in federated learning raises several challenges including data heterogeneity, expensive communication cost, and limited resources.
We propose a salient parameter selection agent based on deep reinforcement learning on local clients, and aggregating the selected salient parameters on the central server.
- Score: 3.5394650810262336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Efficient federated learning is one of the key challenges for training and
deploying AI models on edge devices. However, maintaining data privacy in
federated learning raises several challenges including data heterogeneity,
expensive communication cost, and limited resources. In this paper, we address
the above issues by (a) introducing a salient parameter selection agent based
on deep reinforcement learning on local clients, and aggregating the selected
salient parameters on the central server, and (b) splitting a normal deep
learning model~(e.g., CNNs) as a shared encoder and a local predictor, and
training the shared encoder through federated learning while transferring its
knowledge to Non-IID clients by the local customized predictor. The proposed
method (a) significantly reduces the communication overhead of federated
learning and accelerates the model inference, while method (b) addresses the
data heterogeneity issue in federated learning. Additionally, we leverage the
gradient control mechanism to correct the gradient heterogeneity among clients.
This makes the training process more stable and converge faster. The
experiments show our approach yields a stable training process and achieves
notable results compared with the state-of-the-art methods. Our approach
significantly reduces the communication cost by up to 108 GB when training
VGG-11, and needed $7.6 \times$ less communication overhead when training
ResNet-20, while accelerating the local inference by reducing up to $39.7\%$
FLOPs on VGG-11.
Related papers
- FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - FedAgg: Adaptive Federated Learning with Aggregated Gradients [1.5653612447564105]
We propose an adaptive FEDerated learning algorithm called FedAgg to alleviate the divergence between the local and average model parameters and obtain a fast model convergence rate.
We show that our framework is superior to existing state-of-the-art FL strategies for enhancing model performance and accelerating convergence rate under IID and Non-IID datasets.
arXiv Detail & Related papers (2023-03-28T08:07:28Z) - FedClassAvg: Local Representation Learning for Personalized Federated
Learning on Heterogeneous Neural Networks [21.613436984547917]
We propose a novel personalized federated learning method called federated classifier averaging (FedClassAvg)
FedClassAvg aggregates weights as an agreement on decision boundaries on feature spaces.
We demonstrate it outperforms the current state-of-the-art algorithms on heterogeneous personalized federated learning tasks.
arXiv Detail & Related papers (2022-10-25T08:32:08Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - FedKD: Communication Efficient Federated Learning via Knowledge
Distillation [56.886414139084216]
Federated learning is widely used to learn intelligent models from decentralized data.
In federated learning, clients need to communicate their local model updates in each iteration of model learning.
We propose a communication efficient federated learning method based on knowledge distillation.
arXiv Detail & Related papers (2021-08-30T15:39:54Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.