論文の概要: PGGANet: Pose Guided Graph Attention Network for Person
Re-identification
- arxiv url: http://arxiv.org/abs/2111.14411v1
- Date: Mon, 29 Nov 2021 09:47:39 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 01:47:10.540402
- Title: PGGANet: Pose Guided Graph Attention Network for Person
Re-identification
- Title(参考訳): PGGANet: 人物再識別のための Pose Guided Graph Attention Network
- Authors: Zhijun He, Hongbo Zhao, Wenquan Feng
- Abstract要約: 人物再識別(ReID)は、異なるカメラで撮影された画像から人物を回収することを目的としている。
局所的な特徴と人像のグローバルな特徴を併用することで、人物の検索に堅牢な特徴表現を与えることができることが証明されている。
本研究では,ポーズガイド付きグラフアテンションネットワーク,グローバル機能のための1つのブランチ,中粒体機能のための1つのブランチ,粒状キーポイント機能のための1つのブランチからなるマルチブランチアーキテクチャを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Person re-identification (ReID) aims at retrieving a person from images
captured by different cameras. For deep-learning-based ReID methods, it has
been proved that using local features together with global feature of person
image could help to give robust feature representations for person retrieval.
Human pose information could provide the locations of human skeleton to
effectively guide the network to pay more attention on these key areas and
could also help to reduce the noise distractions from background or occlusions.
However, methods proposed by previous pose-related works might not be able to
fully exploit the benefits of pose information and did not take into
consideration the different contributions of different local features. In this
paper, we propose a pose guided graph attention network, a multi-branch
architecture consisting of one branch for global feature, one branch for
mid-granular body features and one branch for fine-granular key point features.
We use a pre-trained pose estimator to generate the key-point heatmap for local
feature learning and carefully design a graph attention convolution layer to
re-evaluate the contribution weights of extracted local features by modeling
the similarities relations. Experiments results demonstrate the effectiveness
of our approach on discriminative feature learning and we show that our model
achieves state-of-the-art performances on several mainstream evaluation
datasets. We also conduct a plenty of ablation studies and design different
kinds of comparison experiments for our network to prove its effectiveness and
robustness, including holistic datasets, partial datasets, occluded datasets
and cross-domain tests.
- Abstract(参考訳): 人物再識別(ReID)は、異なるカメラで撮影された画像から人物を回収することを目的としている。
深層学習に基づくReID法では,局所的特徴と人物像のグローバルな特徴を併用することで,人物検索に堅牢な特徴表現を与えることが証明されている。
人間のポーズ情報は、人間の骨格の位置を提供し、ネットワークを効果的に誘導し、これらの重要な領域に注意を払い、背景や閉塞からのノイズの妨げを減らすのに役立つ。
しかし,従来のポーズ関連作品では,ポーズ情報の利点を十分に活用できず,地域特性の異なる貢献を考慮に入れなかった。
本稿では,ポーズガイド付きグラフアテンションネットワーク,グローバル機能のための1つのブランチ,中粒体機能のための1つのブランチ,粒状キーポイント機能のための1つのブランチからなるマルチブランチアーキテクチャを提案する。
事前学習されたポーズ推定器を用いて局所特徴学習のためのキーポイントヒートマップを生成し、グラフ注意畳み込み層を慎重に設計し、類似度関係をモデル化して抽出した局所特徴の寄与重みを再評価する。
実験の結果,本手法が識別的特徴学習に与える影響を実証し,本モデルがいくつかの主流評価データセット上で最先端の性能を達成することを示す。
また,我々は多くのアブレーション研究を行い,その効果と頑健性を証明するため,ネットワークにおける異なる種類の比較実験をデザインした。
関連論文リスト
- Pose-Aided Video-based Person Re-Identification via Recurrent Graph
Convolutional Network [41.861537712563816]
本稿では,映像検索機能以外の識別的ポーズ特徴を学習することを提案する。
ポーズの特徴を学習するために、私たちはまず、オフザシェルフポーズ検知器を通して各フレーム内の歩行者のポーズを検出する。
次に、繰り返しグラフ畳み込みネットワーク(RGCN)を用いて、時間的ポーズグラフのノード埋め込みを学習する。
論文 参考訳(メタデータ) (2022-09-23T13:20:33Z) - Local-Aware Global Attention Network for Person Re-Identification Based on Body and Hand Images [0.0]
本稿では,身体画像と手動画像の両面から,人物Re-Idに対するエンドツーエンドの識別的深層特徴学習のための複合的アプローチを提案する。
提案手法は既存の最先端手法よりも一貫して優れている。
論文 参考訳(メタデータ) (2022-09-11T09:43:42Z) - Contrastive Learning of Features between Images and LiDAR [18.211513930388417]
この研究は、クロスモーダルな特徴を密接な対照的な学習問題として扱う。
優れた特徴を学習し、一般性を損なわないために、画像に広く使われているPointNet++アーキテクチャの亜種を開発した。
我々のモデルでは,特徴を可視化することで,画像とLiDARの両方から情報を学習できることが示されている。
論文 参考訳(メタデータ) (2022-06-24T04:35:23Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Kinship Verification Based on Cross-Generation Feature Interaction
Learning [53.62256887837659]
顔画像からの血縁検証は、コンピュータビジョンの応用において、新しいが挑戦的な技術として認識されている。
本稿では,頑健な親族関係検証のためのクロスジェネレーション・インタラクション・ラーニング(CFIL)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-07T01:50:50Z) - Graph-based Person Signature for Person Re-Identifications [17.181807593574764]
詳細な人物の記述(ラベルの属性)と視覚的特徴(ボディパーツとグローバル機能)をグラフに効果的に集約する新しい方法を提案します。
グラフは、人物の再識別のためのマルチブランチマルチタスクフレームワークに統合されます。
提案手法は,技術状況間での競争結果を達成し,他の属性ベースの手法やマスク誘導手法よりも優れる。
論文 参考訳(メタデータ) (2021-04-14T10:54:36Z) - Joint Learning of Neural Transfer and Architecture Adaptation for Image
Recognition [77.95361323613147]
現在の最先端の視覚認識システムは、大規模データセット上でニューラルネットワークを事前トレーニングし、より小さなデータセットでネットワーク重みを微調整することに依存している。
本稿では,各ドメインタスクに適応したネットワークアーキテクチャの動的適応と,効率と効率の両面で重みの微調整の利点を実証する。
本手法は,ソースドメインタスクでスーパーネットトレーニングを自己教師付き学習に置き換え,下流タスクで線形評価を行うことにより,教師なしパラダイムに容易に一般化することができる。
論文 参考訳(メタデータ) (2021-03-31T08:15:17Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Ventral-Dorsal Neural Networks: Object Detection via Selective Attention [51.79577908317031]
我々はVDNet(Ventral-Dorsal Networks)と呼ばれる新しいフレームワークを提案する。
人間の視覚システムの構造にインスパイアされた我々は「Ventral Network」と「Dorsal Network」の統合を提案する。
実験の結果,提案手法は最先端の物体検出手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-05-15T23:57:36Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
本稿では,高次関係とトポロジ情報を識別的特徴とロバストなアライメントのために学習し,新しい枠組みを提案する。
我々のフレームワークはOccluded-Dukeデータセットで最先端の6.5%mAPスコアを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-18T12:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。