論文の概要: Improving traffic sign recognition by active search
- arxiv url: http://arxiv.org/abs/2111.14426v1
- Date: Mon, 29 Nov 2021 10:14:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 15:39:37.158164
- Title: Improving traffic sign recognition by active search
- Title(参考訳): アクティブ検索による交通標識認識の改善
- Authors: S. Jaghouar, H. Gustafsson, B. Mehlig, E. Werner, N.Gustafsson
- Abstract要約: 稀な交通標識を認識するための反復的能動学習アルゴリズムについて述べる。
標準のResNetは、レアクラスの単一のサンプルのみを含むトレーニングセットでトレーニングされる。
本研究は, 希少クラスに属する推定確率によって, 未ラベル集合の標本を分類することにより, 希少クラスからの標本を効率的に同定できることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We describe an iterative active-learning algorithm to recognise rare traffic
signs. A standard ResNet is trained on a training set containing only a single
sample of the rare class. We demonstrate that by sorting the samples of a
large, unlabeled set by the estimated probability of belonging to the rare
class, we can efficiently identify samples from the rare class. This works
despite the fact that this estimated probability is usually quite low. A
reliable active-learning loop is obtained by labeling these candidate samples,
including them in the training set, and iterating the procedure. Further, we
show that we get similar results starting from a single synthetic sample. Our
results are important as they indicate a straightforward way of improving
traffic-sign recognition for automated driving systems. In addition, they show
that we can make use of the information hidden in low confidence outputs, which
is usually ignored.
- Abstract(参考訳): 稀な交通標識を認識するための反復能動学習アルゴリズムについて述べる。
標準のResNetは、レアクラスの単一のサンプルのみを含むトレーニングセットでトレーニングされる。
希少クラスに属する確率の推定値によってラベルのない大きな集合のサンプルを分類することにより,レアクラスから効率的にサンプルを同定できることを実証する。
これは、この推定確率が通常非常に低いという事実にもかかわらず機能する。
トレーニングセットに含まれるこれらの候補サンプルをラベル付けし、手順を反復することにより、信頼できるアクティブラーニングループが得られる。
さらに,1つの合成試料から同様の結果が得られることを示した。
この結果は,自動走行システムにおける交通信号認識の容易な改善方法として重要である。
さらに、信頼度の低い出力に隠された情報を活用できることも示しています。
関連論文リスト
- Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Late Stopping: Avoiding Confidently Learning from Mislabeled Examples [61.00103151680946]
そこで本研究では,DNNの長期学習プロセスを通じて,本質的な頑健な学習能力を生かした新しいフレームワークであるLatlas Stoppingを提案する。
誤ラベルとクリーンな例は、それらが一貫して正しく分類されるために必要なエポックの数に相違があることを実証的に観察する。
ベンチマークシミュレーションと実世界のノイズデータセットによる実験結果から,提案手法は最先端の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-26T12:43:25Z) - Robust Positive-Unlabeled Learning via Noise Negative Sample
Self-correction [48.929877651182885]
正および未ラベルのデータから学ぶことは、文学における正の未ラベル(PU)学習として知られている。
本研究では,人間の学習の性質を動機とした学習戦略を取り入れた,新しい堅牢なPU学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-01T04:34:52Z) - Forgetful Active Learning with Switch Events: Efficient Sampling for
Out-of-Distribution Data [13.800680101300756]
実際には、完全に訓練されたニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)入力とランダムに相互作用する。
本稿では,スイッチイベント(FALSE)による忘れがちなアクティブラーニングについて紹介する。
270以上の実験で最大4.5%の精度向上が報告された。
論文 参考訳(メタデータ) (2023-01-12T16:03:14Z) - Reconstruction guided Meta-learning for Few Shot Open Set Recognition [31.49168444631114]
ReFOCS (Reconstructing Exemplar-based Few-shot Open-set Classifier) を提案する。
新規な再構築型メタラーニング戦略であるReFOCSを用いてFSOSRを効率化する。
ReFOCSは複数の最先端手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-07-31T23:23:35Z) - Combining Feature and Instance Attribution to Detect Artifacts [62.63504976810927]
トレーニングデータアーティファクトの識別を容易にする手法を提案する。
提案手法は,トレーニングデータのアーティファクトの発見に有効であることを示す。
我々は,これらの手法が実際にNLP研究者にとって有用かどうかを評価するために,小規模なユーザスタディを実施している。
論文 参考訳(メタデータ) (2021-07-01T09:26:13Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
タスク指向対話システムにおいて、スコープ外インテント検出は実用上重要である。
本稿では,テストシナリオをシミュレートして,スコープ外インテント分類器をエンドツーエンドに学習する手法を提案する。
提案手法を4つのベンチマーク・ダイアログ・データセット上で広範囲に評価し,最先端のアプローチに対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-16T08:17:18Z) - CSI: Novelty Detection via Contrastive Learning on Distributionally
Shifted Instances [77.28192419848901]
コントラストシフトインスタンス (CSI) という,単純かつ効果的な手法を提案する。
従来のコントラスト学習法のように,サンプルを他の例と対比することに加えて,本トレーニング手法では,サンプルを分散シフトによる拡張と対比する。
本実験は, 種々の新規検出シナリオにおける本手法の優位性を実証する。
論文 参考訳(メタデータ) (2020-07-16T08:32:56Z) - Deep Active Learning via Open Set Recognition [0.0]
多くのアプリケーションでは、データは簡単に取得できるが、顕著な例を示すのに高価で時間がかかる。
オープンセット認識問題として能動的学習を定式化する。
現在のアクティブな学習方法とは異なり、我々のアルゴリズムはタスクラベルを必要とせずにタスクを学習することができる。
論文 参考訳(メタデータ) (2020-07-04T22:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。