論文の概要: TsFeX: Contact Tracing Model using Time Series Feature Extraction and
Gradient Boosting
- arxiv url: http://arxiv.org/abs/2111.14454v1
- Date: Mon, 29 Nov 2021 11:12:38 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-01 00:19:48.187129
- Title: TsFeX: Contact Tracing Model using Time Series Feature Extraction and
Gradient Boosting
- Title(参考訳): TsFeX:時系列特徴抽出と勾配ブーストを用いた接触追跡モデル
- Authors: Manuela Nayantara Jeyaraj, Valerio Antonini, Yingjie Niu, Sonal
Santosh Baberwal, Faithful Chiagoziem Onwuegbuche, Robert Foskin
- Abstract要約: 本研究は、新型コロナウイルスに感染した他人と接触した可能性がある個人を識別する自動機械学習システムを提案する。
本稿では、感染した人物に近づいたかどうかを効果的に予測する最適解モデルにたどり着く際のアプローチについて述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the outbreak of COVID-19 pandemic, a dire need to effectively identify
the individuals who may have come in close-contact to others who have been
infected with COVID-19 has risen. This process of identifying individuals, also
termed as 'Contact tracing', has significant implications for the containment
and control of the spread of this virus. However, manual tracing has proven to
be ineffective calling for automated contact tracing approaches. As such, this
research presents an automated machine learning system for identifying
individuals who may have come in contact with others infected with COVID-19
using sensor data transmitted through handheld devices. This paper describes
the different approaches followed in arriving at an optimal solution model that
effectually predicts whether a person has been in close proximity to an
infected individual using a gradient boosting algorithm and time series feature
extraction.
- Abstract(参考訳): 新型コロナウイルス(COVID-19)の感染拡大に伴い、新型コロナウイルスに感染した人たちと接触した可能性がある個人を効果的に特定する必要がある。
この「接触追跡」とも呼ばれる個人を同定するプロセスは、このウイルスの拡散を封じ込め、制御することに大きな影響を及ぼす。
しかし、手動トレーシングは、自動接触トレースアプローチの呼び出しが効果的でないことが証明されている。
そこで本研究では,ハンドヘルドデバイスを介して送信されるセンサデータを用いて,新型コロナウイルスに感染した可能性のある個人を識別する自動機械学習システムを提案する。
本稿では, 勾配促進アルゴリズムと時系列特徴抽出を用いて, 感染した個体に近づいたかどうかを効果的に予測する最適解モデルにたどり着く際のアプローチについて述べる。
関連論文リスト
- Bayesian Networks and Machine Learning for COVID-19 Severity Explanation and Demographic Symptom Classification [12.40025057417184]
新型コロナウイルスの隠れた情報を蒸留する3段階のデータ駆動方式を提案する。
第1段階では、バイエルンネットワーク構造学習法を用いて、新型コロナウイルスの症状の因果関係を同定する。
第2段階として、アウトプットは教師なし機械学習(ML)アルゴリズムをトレーニングするための有用なガイドとして機能する。
最終段階は、クラスタリングから得られたラベルを活用して、人口統計学的症状識別モデルをトレーニングする。
論文 参考訳(メタデータ) (2024-06-16T05:43:24Z) - Models for digitally contact-traced epidemics [0.0]
デジタルコンタクトトレースは、従来のコンタクトトレースをスケールアップする自動化ソリューションとして提案されている。
新型コロナウイルスの感染対策に関して, クローズドな条件を導出するためのコンパートメンタルSEIRモデルを提案する。
論文 参考訳(メタデータ) (2022-03-01T16:50:00Z) - Project Achoo: A Practical Model and Application for COVID-19 Detection
from Recordings of Breath, Voice, and Cough [55.45063681652457]
コンシューマー端末で録音した音声を用いて、新型コロナウイルスを迅速にトリアージする機械学習手法を提案する。
この手法は,信号処理手法と微調整深層学習ネットワークを組み合わせることで,信号の識別,コークス検出,分類を行う手法を提供する。
我々はまた、症状チェッカーと音声、息、うず信号を使って新型コロナウイルスの感染を検知するモバイルアプリケーションを開発し、展開した。
論文 参考訳(メタデータ) (2021-07-12T08:07:56Z) - Whom to Test? Active Sampling Strategies for Managing COVID-19 [1.4610038284393163]
本稿では、新型コロナウイルスなどのパンデミック時に感染を検査する個人を選択する方法を提案する。
ここで提示されるスマートテストのアイデアは、機械学習におけるアクティブラーニングとマルチアームバンディット技術によって動機付けられている。
論文 参考訳(メタデータ) (2020-12-25T02:04:50Z) - PCT-TEE: Trajectory-based Private Contact Tracing System with Trusted
Execution Environment [20.089914572456546]
既存のBluetoothベースのPrivate Contact Tracing(PCT)システムは、人々が新型コロナウイルス患者と直接接触したかどうかを検出することができる。
直接接触と間接接触の両方が可能な,効率的かつセキュアな接触追跡システムを提案する。
論文 参考訳(メタデータ) (2020-12-07T15:22:19Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSimは、ウイルス学、病気の進行、社会的接触ネットワーク、移動パターンに基づくエージェントベースのコンパートメンタルシミュレータである。
1)バイナリテスト結果に基づいてバイナリレコメンデーションを割り当てる標準バイナリコンタクトトレース (BCT) と,2) 多様な特徴に基づいてグレードレベルのレコメンデーションを割り当てる特徴ベースコンタクトトレース (FCT) のルールベースの手法である。
論文 参考訳(メタデータ) (2020-10-30T00:47:01Z) - Predicting Infectiousness for Proactive Contact Tracing [75.62186539860787]
大規模デジタル接触追跡は、ウイルスの拡散を最小限に抑えながら、経済と社会活動を再開する潜在的な解決策である。
プライバシ、モビリティ制限、公衆衛生のトレードオフを行う様々なDCT手法が提案されている。
本稿では,個人の感染を積極的に予測するためにスマートフォンに展開可能な方法を開発し,検証する。
論文 参考訳(メタデータ) (2020-10-23T17:06:07Z) - Epidemic mitigation by statistical inference from contact tracing data [61.04165571425021]
我々は,個人が感染するリスクを推定するためにベイズ推定法を開発した。
本稿では,感染防止のための検査・隔離戦略を最適化するために,確率論的リスク推定手法を提案する。
我々のアプローチは、最近接触した個人間の通信のみを必要とする、完全に分散されたアルゴリズムに変換されます。
論文 参考訳(メタデータ) (2020-09-20T12:24:45Z) - Trust and Transparency in Contact Tracing Applications [81.07729301514182]
世界的な新型コロナウイルスの感染拡大で、新型コロナウイルスの感染拡大を抑える取り組みが進められている。
これらの取り組みの1つは、感染した人への暴露を通じて病気を発症するリスクがある人を特定するために接触追跡を使用することである。
人間の接触トレーサの作業を補うために、デジタル接触追跡ソリューションの開発と利用に大きな関心が寄せられている。
これらのアプリケーションによる機密性の高い個人情報の収集と利用は、これらのソリューションに有利な関心を持つステークホルダーグループによる多くの懸念につながっている。
論文 参考訳(メタデータ) (2020-06-19T20:29:24Z) - Continuous Learning and Inference of Individual Probability of
SARS-CoV-2 Infection Based on Interaction Data [0.0]
本研究は,SARS-CoV-2ウイルスの非感染性キャリアーの確率を,対話型連続学習と,感染性ランキングのための個別確率推定(CLIIP)を用いて決定する新しい手法を提案する。
従来の接触追跡法と比較して,非血縁性ウイルスキャリアーの探索に必要なスクリーニングと検疫を最大94%削減する。
論文 参考訳(メタデータ) (2020-06-08T14:52:04Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。