Peculiarities of Interaction of a Quantum Dot with Non-Classical Light
in the Self-Phase Modulation Regime
- URL: http://arxiv.org/abs/2111.14461v1
- Date: Mon, 29 Nov 2021 11:21:02 GMT
- Title: Peculiarities of Interaction of a Quantum Dot with Non-Classical Light
in the Self-Phase Modulation Regime
- Authors: Stepan N. Balybin, Roman V. Zakharov, Olga V. Tikhonova
- Abstract summary: Influence of the self-phase modulation of quantum light on the induced resonant excitation of a semiconductor quantum dot is studied.
The phase nonlinearity is found to result actually in a resonance detuning specific for each field photon number state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Influence of the self-phase modulation of quantum light on the induced
resonant excitation of a semiconductor quantum dot is studied analytically in
the case of the Kerr-nonlinearity of the medium. The phase nonlinearity is
found to result actually in a resonance detuning specific for each field photon
number state. This effect is shown to provide significant decrease of the
excitation efficiency accompanied at the same time by more regular excitation
dynamics obtained even for initial squeezed vacuum field state. The enhancement
of entanglement between semiconductor and field subsystems with growing
non-linearity is demonstrated. As a result, the formation of different types of
non-Gaussian field states is found with features being analyzed in details.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Spectral response of a nonlinear Jaynes-Cummings model [0.0]
We obtain analytical expressions of the time-dependent spectral response of a nonlinear Jaynes-Cummings model based on deformed field operators.
We show that the long-time response of the resulting nonlinear cavity field resembles the one experimentally obtained in the strong-dispersive regime of circuit quantum electrodynamics.
arXiv Detail & Related papers (2024-08-17T01:20:30Z) - Dynamical Spectral Response of Fractonic Quantum Matter [0.0]
We study the low-energy excitations of a constrained Bose-Hubbard model in one dimension.
We show the existence of gapped excitations compatible with strong coupling results.
arXiv Detail & Related papers (2023-10-24T18:00:01Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Classical-to-quantum transition in multimode nonlinear systems with
strong photon-photon coupling [12.067269037074292]
We investigate the classical-to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method.
This work presents a universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-11-18T07:26:57Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Phase randomness in a gain-switched semiconductor laser: stochastic
differential equation analysis [55.41644538483948]
We performed theoretical analysis of the phase randomness in a gain-switched semiconductor laser in the context of its application as a quantum entropy source.
Numerical simulations demonstrate that phase diffusion r.m.s. exhibits non-linear dependence on the bias current.
It is shown that phase diffusion between laser pulses cannot always be assumed to exhibit required efficiency.
arXiv Detail & Related papers (2020-11-20T13:35:35Z) - Quantum nonlinear metasurfaces [68.8204255655161]
We outline a general quantum theory of spontaneous photon-pair generation in arbitrary nonlinear photonic structures.
We discuss the first experimental results demonstrating photon-pair generation in a single nonlinear nanoantenna.
arXiv Detail & Related papers (2020-08-22T14:57:24Z) - Quantum Phase Transition and Berry Phase in an Extended Dicke Model [0.0]
We investigate quantum phase transitions, quantum criticality, and Berry phase for the ground state of an ensemble of non-interacting two-level atoms.
The optical medium is pumped externally through a classical electric field, so that there is a degenerate parametric amplification effect.
It is remarkable that the model allows the control of the quantum criticality through a suitable choice of the parameters of the non-linear optical medium.
arXiv Detail & Related papers (2020-06-11T16:46:46Z) - Unconditional accumulation of nonclassicality in a single-atom
mechanical oscillator [0.0]
We report on the robust experimental accumulation of nonclassicallity of motion of a single trapped ion.
The nonclassicality stems from deterministic incoherent modulation of thermal phonon number distribution.
We show that the repetitive application of this nonlinear process monotonically accumulates the observable state nonclassicality.
arXiv Detail & Related papers (2020-04-27T15:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.