Quantum theory for nonlinear optical effects in the ultra-strong light-matter coupling regime
- URL: http://arxiv.org/abs/2412.08297v1
- Date: Wed, 11 Dec 2024 11:17:38 GMT
- Title: Quantum theory for nonlinear optical effects in the ultra-strong light-matter coupling regime
- Authors: Thomas Krieguer, Yanko Todorov,
- Abstract summary: We present a microscopic quantum theory for nonlinear optical phenomena in semiconductor quantum well heterostructures.
We propose novel design principles to optimize nonlinear conversion efficiencies in dense, microcavity-coupled electronic systems.
- Score: 0.0
- License:
- Abstract: We present a microscopic quantum theory for nonlinear optical phenomena in semiconductor quantum well heterostructures operating in the regime of ultra-strong light matter coupling regime. This work extends the Power-Zienau-Wooley (PZW) formulation of quantum electrodynamics to account for nonlinear interactions based on a fully fermionic approach, without resorting to any bosonization approximation. It provides a unified description of the microcavity and the local field enhancement effects on the nonlinear optical response, thus encompassing the phenomena known as epsilon near zero (ENZ) effect. In particular, our theory describes the impact of the light-matter coupled states on the high frequency generation process, relevant for recent experimental investigations with polaritonic metasurfaces. We unveil the limitations of traditional single-particle approaches and propose novel design principles to optimize nonlinear conversion efficiencies in dense, microcavity-coupled electronic systems. The theoretical framework developed here provides an efficient tool for the development of advanced quantum optical applications in the mid-infrared and terahertz spectral domains. Furthermore, it establishes a foundation for exploring the quantum properties of the ultra-strong light-matter regime through frequency-converted polariton states.
Related papers
- Electron-beam-induced quantum interference effects in a multi-level quantum emitter [0.0]
Cathodoluminescence spectroscopy has emerged as a novel platform for nanoscale control of nonclassical features of light.
We show that quantum interference can arise between the different relaxation pathways.
We find that the excitation rate, initial state of the emitter, and excited level spacing play a crucial role in determining the influence of interference.
arXiv Detail & Related papers (2025-01-31T15:41:52Z) - Light-Matter Hybridization and Entanglement from the First-Principles [3.8065968624597324]
We introduce a variational Squeeze transformation capable of describing anharmonic quantum fluctuations in photon fields.
This formalism enhances the description of light-matter Entanglement, providing a first-principles framework for understanding light-matter hybridization.
arXiv Detail & Related papers (2024-11-22T15:52:50Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Coherent anharmonicity transfer from matter to light in the THz regime [0.0]
We introduce an infrared cavity quantum electrodynamics (QED) approach for imprinting nonlinear phase shifts on individual THz pulses.
Power-dependent phase shifts on the order of $ 0.1, pi$ can be achieved with femtosecond pulses of only a few $mu$W input power.
arXiv Detail & Related papers (2023-09-21T16:16:40Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Classical-to-quantum transition in multimode nonlinear systems with
strong photon-photon coupling [12.067269037074292]
We investigate the classical-to-quantum transition of such photonic nonlinear systems using the quantum cluster-expansion method.
This work presents a universal tool to study quantum dynamics of multimode systems and explore the nonlinear photonic devices for continuous-variable quantum information processing.
arXiv Detail & Related papers (2021-11-18T07:26:57Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Towards an Engineering Framework for Ultrafast Quantum Nonlinear Optics [0.0]
We review our recent efforts in modeling broadband optical systems at varying levels of abstraction and generality.
We expect our work to guide ongoing theoretical and experimental efforts towards next-generation quantum devices.
arXiv Detail & Related papers (2021-02-17T09:54:37Z) - Quantum nonlinear metasurfaces [68.8204255655161]
We outline a general quantum theory of spontaneous photon-pair generation in arbitrary nonlinear photonic structures.
We discuss the first experimental results demonstrating photon-pair generation in a single nonlinear nanoantenna.
arXiv Detail & Related papers (2020-08-22T14:57:24Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.