論文の概要: On the Effectiveness of Neural Ensembles for Image Classification with
Small Datasets
- arxiv url: http://arxiv.org/abs/2111.14493v1
- Date: Mon, 29 Nov 2021 12:34:49 GMT
- ステータス: 処理完了
- システム内更新日: 2021-11-30 23:41:59.697323
- Title: On the Effectiveness of Neural Ensembles for Image Classification with
Small Datasets
- Title(参考訳): 小型データセットを用いた画像分類におけるニューラルアンサンブルの有効性について
- Authors: Lorenzo Brigato and Luca Iocchi
- Abstract要約: 本稿では,クラスごとのラベル付き例数件による画像分類問題に着目し,比較的小さなネットワークのアンサンブルを用いてデータ効率を向上させる。
比較的浅いネットワークをアンサンブルすることは、小さなデータセットから学ぶための現在の最先端のアプローチよりも一般的に優れている、単純だが効果的な手法であることを示す。
- 参考スコア(独自算出の注目度): 2.3478438171452014
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks represent the gold standard for image classification.
However, they usually need large amounts of data to reach superior performance.
In this work, we focus on image classification problems with a few labeled
examples per class and improve data efficiency by using an ensemble of
relatively small networks. For the first time, our work broadly studies the
existing concept of neural ensembling in domains with small data, through
extensive validation using popular datasets and architectures. We compare
ensembles of networks to their deeper or wider single competitors given a total
fixed computational budget. We show that ensembling relatively shallow networks
is a simple yet effective technique that is generally better than current
state-of-the-art approaches for learning from small datasets. Finally, we
present our interpretation according to which neural ensembles are more sample
efficient because they learn simpler functions.
- Abstract(参考訳): ディープニューラルネットワークは、画像分類の金の標準を表す。
しかし、より優れたパフォーマンスを得るためには、通常、大量のデータが必要です。
本研究では,クラスごとのラベル付き例数件による画像分類問題に着目し,比較的小さなネットワークのアンサンブルを用いてデータ効率を向上させる。
私たちの研究は、一般的なデータセットとアーキテクチャを使用した広範な検証を通じて、小さなデータを持つドメインにおけるニューラルアンサンブルという既存の概念を広く研究しました。
我々は,ネットワークのアンサンブルを,計算予算が一定であれば,より深く,より広い競合相手と比較する。
比較的浅いネットワークをセンセンシングすることは、小さなデータセットから学ぶための現在の最先端のアプローチよりも一般的に優れた、シンプルで効果的なテクニックであることを示している。
最後に、より単純な関数を学習するため、どの神経アンサンブルがよりサンプル効率が高いかを解釈する。
関連論文リスト
- Neural networks trained with SGD learn distributions of increasing
complexity [78.30235086565388]
勾配降下法を用いてトレーニングされたニューラルネットワークは、まず低次入力統計を用いて入力を分類する。
その後、トレーニング中にのみ高次の統計を利用する。
本稿では,DSBと他の単純度バイアスとの関係について論じ,学習における普遍性の原理にその意味を考察する。
論文 参考訳(メタデータ) (2022-11-21T15:27:22Z) - Bandit Sampling for Multiplex Networks [8.771092194928674]
多数のレイヤを持つ多重ネットワーク上でのスケーラブルな学習アルゴリズムを提案する。
オンライン学習アルゴリズムは、トレーニング中に関連する情報を持つレイヤのみを集約するように、関連する隣のレイヤをサンプリングする方法を学ぶ。
合成シナリオと実世界のシナリオの両方に関する実験結果を示す。
論文 参考訳(メタデータ) (2022-02-08T03:26:34Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
本稿では,分類ラベルをセグメントマップの予測から導出する小型データセットのコスト効率の高い分類器であるCvSを提案する。
我々は,CvSが従来の手法よりもはるかに高い分類結果が得られることを示す多種多様な問題に対して,本フレームワークの有効性を評価する。
論文 参考訳(メタデータ) (2021-10-29T18:41:15Z) - Exploiting the relationship between visual and textual features in
social networks for image classification with zero-shot deep learning [0.0]
本稿では,CLIPニューラルネットワークアーキテクチャの伝達可能な学習能力に基づく分類器アンサンブルを提案する。
本研究は,Placesデータセットのラベルによる画像分類タスクに基づいて,視覚的部分のみを考慮した実験である。
画像に関連付けられたテキストを考えることは、目標に応じて精度を向上させるのに役立つ。
論文 参考訳(メタデータ) (2021-07-08T10:54:59Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
グラフ畳み込みネットワークは、構造化されたデータポイント間の関係をキャプチャするための最も有望なアプローチである。
マルチタスク方式でグラフベースニューラルネットワークモデルを学習するための3つの新しい自己教師付き補助タスクを提案する。
論文 参考訳(メタデータ) (2020-11-14T11:09:51Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
本稿では,ネットワークを解析のための完全なグラフに表現するためのトポロジ的視点を提案する。
接続の規模を反映したエッジに学習可能なパラメータを割り当てることにより、学習プロセスを異なる方法で行うことができる。
この学習プロセスは既存のネットワークと互換性があり、より大きな検索空間と異なるタスクへの適応性を持っている。
論文 参考訳(メタデータ) (2020-08-19T04:53:31Z) - Self-supervised Neural Architecture Search [41.07083436560303]
本稿では,ラベル付きデータを必要とせず,新たなネットワークモデルを見つけることができる自己教師型ニューラルネットワークサーチ(SSNAS)を提案する。
このような検索は,NASを用いた教師あり学習に匹敵する結果となり,自己教師あり学習の性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2020-07-03T05:09:30Z) - ReMarNet: Conjoint Relation and Margin Learning for Small-Sample Image
Classification [49.87503122462432]
ReMarNet(Relation-and-Margin Learning Network)と呼ばれるニューラルネットワークを導入する。
本手法は,上記2つの分類機構の双方において優れた性能を発揮する特徴を学習するために,異なるバックボーンの2つのネットワークを組み立てる。
4つの画像データセットを用いた実験により,本手法はラベル付きサンプルの小さな集合から識別的特徴を学習するのに有効であることが示された。
論文 参考訳(メタデータ) (2020-06-27T13:50:20Z) - Looking back to lower-level information in few-shot learning [4.873362301533825]
本稿では,隠れたニューラルネットワーク層の特徴埋め込みを低レベル支援情報として活用し,分類精度を向上させることを提案する。
筆者らは,MiniImageNet と tieredImageNet という2つの人気の数点学習データセットを用いた実験を行い,この手法がネットワークの低レベル情報を利用して最先端の分類性能を向上できることを示した。
論文 参考訳(メタデータ) (2020-05-27T20:32:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。