論文の概要: Secure distribution of a certified random quantum key using an entangled
memory qubit
- arxiv url: http://arxiv.org/abs/2111.14523v1
- Date: Mon, 29 Nov 2021 13:31:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 09:42:05.790411
- Title: Secure distribution of a certified random quantum key using an entangled
memory qubit
- Title(参考訳): エンタングルメモリ量子ビットを用いた認定乱数量子鍵のセキュアな分布
- Authors: Pascal Kobel and Ralf A. Berner and Michael K\"ohl
- Abstract要約: 我々は、量子通信チャネルの両端に認証されたランダム秘密鍵を生成する。
我々は、原子-光子状態のミニエントロピーを用いて鍵のランダム性を証明した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Random generation and confidential distribution of cryptographic keys are
fundamental building blocks of secure communication. Using quantum states in
which the transmitted quantum bit is entangled with a stationary memory quantum
bit allows the secure generation and distribution of keys to be based on
fundamental properties of quantum mechanics. At the same time, the reach of
secure communication networks can be enhanced, in particular, since this
architecture would be compatible with quantum repeaters which are an integral
part for scaling quantum networks. Here, we realize a true single-photon
quantum key distribution protocol (BBM92 protocol) at a second-order temporal
correlation of $ {g^{(2)}(0)=0.00(5)}$ involving an entangled memory qubit
which enables us to produce a certified random secret key on both endpoints of
the quantum communication channel. We certify the randomness of the key using
the min-entropy of the atom-photon state arising from the violation of the CHSH
version of the Bell inequality of $ 2.33(6)$.
- Abstract(参考訳): 暗号鍵のランダム生成と秘密分散はセキュアな通信の基本構成要素である。
送信された量子ビットが静止メモリ量子ビットに絡み合う量子状態を使用することで、キーのセキュアな生成と分散は量子力学の基本的な性質に基づいている。
同時に、特にこのアーキテクチャは、量子ネットワークのスケーリングに不可欠な部分である量子リピータと互換性があるため、セキュアな通信ネットワークのリーチを高めることができる。
本稿では,量子通信チャネルの両端に認証されたランダム秘密鍵を生成可能なエンタングルメモリ量子ビットを含む$ {g^{(2)}(0)=0.00(5)}$の2次時間相関において,真の単一光子量子鍵分散プロトコル(bbm92プロトコル)を実現する。
我々はベルの不等式2.33(6)$のCHSHバージョンに違反した原子-光子状態のミンエントロピーを用いて鍵のランダム性を証明した。
関連論文リスト
- Guarantees on the structure of experimental quantum networks [109.08741987555818]
量子ネットワークは、セキュアな通信、ネットワーク量子コンピューティング、分散センシングのためのマルチパーティ量子リソースと多数のノードを接続し、供給する。
これらのネットワークのサイズが大きくなるにつれて、認証ツールはそれらの特性に関する質問に答える必要がある。
本稿では,ある量子ネットワークにおいて特定の相関が生成できないことを保証するための一般的な方法を示す。
論文 参考訳(メタデータ) (2024-03-04T19:00:00Z) - Secured Quantum Identity Authentication Protocol for Quantum Networks [2.3317857568404032]
本稿では、悪意のある絡み合いから量子ネットワークを保護する量子ID認証プロトコルを提案する。
既存のプロトコルとは異なり、提案された量子認証プロトコルは共有秘密鍵の定期的な更新を必要としない。
論文 参考訳(メタデータ) (2023-12-10T05:36:49Z) - Public-Key Encryption with Quantum Keys [11.069434965621683]
鍵が量子状態であることが許される量子公開鍵暗号(qPKE)の概念について検討する。
量子公開鍵暗号を構築するには計算仮定が必要であることを示す。
論文 参考訳(メタデータ) (2023-06-13T11:32:28Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Field-deployable Quantum Memory for Quantum Networking [62.72060057360206]
実世界の展開とスケーリングの課題に対応するために設計された量子メモリを提示する。
メモリ技術は、温かいルビジウム蒸気を記憶媒体として利用し、室温で動作する。
我々は,高忠実度検索(95%)と低演算誤差(10-2)$を,単一光子レベルの量子メモリ操作に対して160$mu s$の記憶時間で示す。
論文 参考訳(メタデータ) (2022-05-26T00:33:13Z) - Enhanced Quantum Key Distribution using Hybrid Channels and Natural
Random Numbers [0.0]
本稿では,古典チャネルと量子チャネルを混合したセキュアな3つの鍵分配プロトコルを提案する。
提案プロトコルは、量子コンピュータの特性を利用して、容易に伝送可能な自然乱数を生成する。
論文 参考訳(メタデータ) (2020-07-28T15:14:59Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
エンタングルメントベースのプロトコルは、追加のセキュリティ層を提供し、量子リピータで好意的にスケールする。
2つの量子チャネルアプローチによるEkert量子鍵分配プロトコルを実験的に実証した。
我々のフィールドスタディは、量子ドットの絡み合った光子源が実験以上の実験を行う準備ができていることを強調している。
論文 参考訳(メタデータ) (2020-07-24T18:21:19Z) - The QQUIC Transport Protocol: Quantum assisted UDP Internet Connections [11.223026257748657]
1984年、量子鍵分布(Quantum key distribution)は、2つのパーティが量子力学の性質により共有ランダム秘密鍵を生成できる、商用化されたセキュアな通信方法である。
本稿では,QQUICトランスポートプロトコル(Quantum Assisted Quick Internet Connections,QQUICトランスポートプロトコル)を提案する。
論文 参考訳(メタデータ) (2020-06-01T00:44:58Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
複数のユニキャスト量子ネットワーク上でセキュアな量子ネットワークコードを導出する正準法を提案する。
我々のコードは攻撃がないときに量子状態を正しく送信する。
また、攻撃があっても送信された量子状態の秘密性を保証する。
論文 参考訳(メタデータ) (2020-03-30T09:25:13Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z) - Experimental quantum conference key agreement [55.41644538483948]
量子ネットワークは、世界規模でセキュアな通信を可能にするために、長距離におけるマルチノードの絡み合いを提供する。
ここでは、マルチパーティの絡み合いを利用した量子通信プロトコルである量子会議鍵合意を示す。
我々は4光子グリーンバーガー・ホーネ・ザイリンガー状態(GHZ)を最大50kmの繊維に高輝度の光子対光線源で生成する。
論文 参考訳(メタデータ) (2020-02-04T19:00:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。