論文の概要: Solving classification problems using Traceless Genetic Programming
- arxiv url: http://arxiv.org/abs/2111.14790v1
- Date: Thu, 7 Oct 2021 06:13:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-12 05:33:55.020112
- Title: Solving classification problems using Traceless Genetic Programming
- Title(参考訳): トレースレス遺伝的プログラミングによる分類問題の解法
- Authors: Mihai Oltean
- Abstract要約: トレースレス遺伝的プログラミング(TGP)は、現実の難解な問題を解くために用いられる新しい遺伝的プログラミング(GP)である。
本稿では, ProBEN1 から抽出した実世界の分類問題の解法として TGP を用いる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traceless Genetic Programming (TGP) is a new Genetic Programming (GP) that
may be used for solving difficult real-world problems. The main difference
between TGP and other GP techniques is that TGP does not explicitly store the
evolved computer programs. In this paper, TGP is used for solving real-world
classification problems taken from PROBEN1. Numerical experiments show that TGP
performs similar and sometimes even better than other GP techniques for the
considered test problems.
- Abstract(参考訳): traceless genetic programming (tgp) は,実世界の難しい問題を解決するための新しい遺伝的プログラミング (gp) である。
TGPと他のGP技術の主な違いは、TGPが進化したコンピュータプログラムを明示的に記憶していないことである。
本稿では, ProBEN1 から抽出した実世界の分類問題の解法として TGP を用いる。
数値実験により、TGPは、検討されたテスト問題に対して、他のGP技術よりもよく、時折よく動作することが示された。
関連論文リスト
- Evaluating Genetic Algorithms through the Approximability Hierarchy [55.938644481736446]
本稿では,問題の近似クラスに依存する遺伝的アルゴリズムの有用性を解析する。
特に, 遺伝的アルゴリズムは階層の最も悲観的なクラスに特に有用であることを示す。
論文 参考訳(メタデータ) (2024-02-01T09:18:34Z) - Liquid State Genetic Programming [0.0]
本稿では,LSGP(Liquid State Genetic Programming)と呼ばれる新しい遺伝的プログラミング法を提案する。
LSGPは、入力(液体)を格納する動的メモリと、問題を解決するために使用される遺伝的プログラミング技術を組み合わせたハイブリッド手法である。
数値実験により、LSGPは、検討されたテスト問題に対して、標準的な遺伝的プログラミングと同じような、時には同等に機能することが示された。
論文 参考訳(メタデータ) (2023-12-05T17:09:21Z) - Weighted Ensembles for Active Learning with Adaptivity [60.84896785303314]
本稿では,ラベル付きデータに漸進的に適応した重み付きGPモデルのアンサンブルについて述べる。
この新しいEGPモデルに基づいて、不確実性および不一致ルールに基づいて、一連の取得関数が出現する。
適応的に重み付けされたEGPベースの取得関数のアンサンブルも、さらなる性能向上のために導入されている。
論文 参考訳(メタデータ) (2022-06-10T11:48:49Z) - Taylor Genetic Programming for Symbolic Regression [5.371028373792346]
遺伝的プログラミング(GP)は、記号回帰(SR)問題を解決するために一般的に用いられる手法である。
そこで我々はTaylorGP (Taylor Genetic Programming) を提案し,データセットに適合するシンボリック方程式を近似する。
TaylorGPは9つのベースライン法よりも精度が高いだけでなく、安定した結果を見つけるのにも速い。
論文 参考訳(メタデータ) (2022-04-28T13:43:39Z) - Scaling Gaussian Process Optimization by Evaluating a Few Unique
Candidates Multiple Times [119.41129787351092]
GPに基づく逐次ブラックボックス最適化は,複数の評価ステップの候補解に固執することで効率よく行うことができることを示す。
GP-UCB と GP-EI の2つのよく確立されたGP-Opt アルゴリズムを改良し,バッチ化された GP-Opt の規則を適応させる。
論文 参考訳(メタデータ) (2022-01-30T20:42:14Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Using Traceless Genetic Programming for Solving Multiobjective
Optimization Problems [1.9493449206135294]
トレーレス・ジェネティック・プログラミング(Traceless Genetic Programming、TGP)は、プログラム自体よりもプログラムの出力に焦点をあてる場合に使われる遺伝的プログラミング(GP)の変種である。
TGPと組み合わせて2つの遺伝子操作子(クロスオーバーと挿入)が使用される。
数値実験により、TGPは非常に高速かつ十分に検討されたテスト問題を解くことができることが示された。
論文 参考訳(メタデータ) (2021-10-07T05:55:55Z) - Solving even-parity problems using traceless genetic programming [0.0]
TGPは、個人を構築するためのテクニックと、個人を表現するテクニックを組み合わせたハイブリッド技術である。
TGPと組み合わせて2つの遺伝子操作子(クロスオーバーと挿入)が使用される。
TGPは、均一性問題に対するデジタル回路の進化に応用される。
論文 参考訳(メタデータ) (2021-10-04T13:23:32Z) - Learning Structures in Earth Observation Data with Gaussian Processes [67.27044745471207]
本稿では,この分野の主要な理論gp開発について概説する。
信号特性と雑音特性を尊重し、特徴ランキングを自動的に提供し、関連する不確かさ区間を適用可能にする新しいアルゴリズムについて論じる。
論文 参考訳(メタデータ) (2020-12-22T10:46:37Z) - Ensemble Genetic Programming [0.0]
Ensemble GPは、他の遺伝的プログラミングシステムと同じ手順に従っているが、集団構造、適合性評価、遺伝的演算子が異なる。
我々は,この手法を二項分類問題一式で検証し,より小さなモデルで,標準GPよりもはるかに優れた結果を得た。
論文 参考訳(メタデータ) (2020-01-21T14:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。