ConDA: Unsupervised Domain Adaptation for LiDAR Segmentation via
Regularized Domain Concatenation
- URL: http://arxiv.org/abs/2111.15242v3
- Date: Thu, 6 Apr 2023 16:07:35 GMT
- Title: ConDA: Unsupervised Domain Adaptation for LiDAR Segmentation via
Regularized Domain Concatenation
- Authors: Lingdong Kong, Niamul Quader, Venice Erin Liong
- Abstract summary: ConDA is a concatenation-based domain adaptation framework for LiDAR segmentation.
We propose an anti-aliasing regularizer and an entropy aggregator to reduce the negative effect caused by the aliasing artifacts and noisy pseudo labels.
- Score: 10.65673380743972
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Transferring knowledge learned from the labeled source domain to the raw
target domain for unsupervised domain adaptation (UDA) is essential to the
scalable deployment of autonomous driving systems. State-of-the-art methods in
UDA often employ a key idea: utilizing joint supervision signals from both
source and target domains for self-training. In this work, we improve and
extend this aspect. We present ConDA, a concatenation-based domain adaptation
framework for LiDAR segmentation that: 1) constructs an intermediate domain
consisting of fine-grained interchange signals from both source and target
domains without destabilizing the semantic coherency of objects and background
around the ego-vehicle; and 2) utilizes the intermediate domain for
self-training. To improve the network training on the source domain and
self-training on the intermediate domain, we propose an anti-aliasing
regularizer and an entropy aggregator to reduce the negative effect caused by
the aliasing artifacts and noisy pseudo labels. Through extensive studies, we
demonstrate that ConDA significantly outperforms prior arts in mitigating
domain gaps.
Related papers
- Overcoming Negative Transfer by Online Selection: Distant Domain Adaptation for Fault Diagnosis [42.85741244467877]
The term distant domain adaptation problem' describes the challenge of adapting from a labeled source domain to a significantly disparate unlabeled target domain.
This problem exhibits the risk of negative transfer, where extraneous knowledge from the source domain adversely affects the target domain performance.
In response to this challenge, we propose a novel Online Selective Adversarial Alignment (OSAA) approach.
arXiv Detail & Related papers (2024-05-25T07:17:47Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
This paper presents an unsupervised domain adaptation (UDA) method for predicting unlabeled target domain data.
We propose the Adversarial self-superVised domain Adaptation network for the TARget domain (AVATAR) algorithm.
Our proposed model significantly outperforms state-of-the-art methods on three UDA benchmarks.
arXiv Detail & Related papers (2023-04-28T20:31:56Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - Bridging the Source-to-target Gap for Cross-domain Person
Re-Identification with Intermediate Domains [63.23373987549485]
Cross-domain person re-identification (re-ID) aims to transfer the identity-discriminative knowledge from the source to the target domain.
We propose an Intermediate Domain Module (IDM) and a Mirrors Generation Module (MGM)
IDM generates multiple intermediate domains by mixing the hidden-layer features from source and target domains.
MGM is introduced by mapping the features into the IDM-generated intermediate domains without changing their original identity.
arXiv Detail & Related papers (2022-03-03T12:44:56Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID [58.46907388691056]
We argue that the bridging between the source and target domains can be utilized to tackle the UDA re-ID task.
We propose an Intermediate Domain Module (IDM) to generate intermediate domains' representations on-the-fly.
Our proposed method outperforms the state-of-the-arts by a large margin in all the common UDA re-ID tasks.
arXiv Detail & Related papers (2021-08-05T07:19:46Z) - CLDA: Contrastive Learning for Semi-Supervised Domain Adaptation [1.2691047660244335]
Unsupervised Domain Adaptation (UDA) aims to align the labeled source distribution with the unlabeled target distribution to obtain domain invariant predictive models.
We propose Contrastive Learning framework for semi-supervised Domain Adaptation (CLDA) that attempts to bridge the intra-domain gap.
CLDA achieves state-of-the-art results on all the above datasets.
arXiv Detail & Related papers (2021-06-30T20:23:19Z) - Domain Consistency Regularization for Unsupervised Multi-source Domain
Adaptive Classification [57.92800886719651]
Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years.
domain shift in MUDA exists not only between the source and target domains but also among multiple source domains.
We propose an end-to-end trainable network that exploits domain Consistency Regularization for unsupervised Multi-source domain Adaptive classification.
arXiv Detail & Related papers (2021-06-16T07:29:27Z) - Contradistinguisher: A Vapnik's Imperative to Unsupervised Domain
Adaptation [7.538482310185133]
We propose a model referred Contradistinguisher that learns contrastive features and whose objective is to jointly learn to contradistinguish the unlabeled target domain in an unsupervised way.
We achieve the state-of-the-art on Office-31 and VisDA-2017 datasets in both single-source and multi-source settings.
arXiv Detail & Related papers (2020-05-25T19:54:38Z) - MADAN: Multi-source Adversarial Domain Aggregation Network for Domain
Adaptation [58.38749495295393]
Domain adaptation aims to learn a transferable model to bridge the domain shift between one labeled source domain and another sparsely labeled or unlabeled target domain.
Recent multi-source domain adaptation (MDA) methods do not consider the pixel-level alignment between sources and target.
We propose a novel MDA framework to address these challenges.
arXiv Detail & Related papers (2020-02-19T21:22:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.