Overcoming Negative Transfer by Online Selection: Distant Domain Adaptation for Fault Diagnosis
- URL: http://arxiv.org/abs/2405.17493v1
- Date: Sat, 25 May 2024 07:17:47 GMT
- Title: Overcoming Negative Transfer by Online Selection: Distant Domain Adaptation for Fault Diagnosis
- Authors: Ziyan Wang, Mohamed Ragab, Wenmian Yang, Min Wu, Sinno Jialin Pan, Jie Zhang, Zhenghua Chen,
- Abstract summary: The term distant domain adaptation problem' describes the challenge of adapting from a labeled source domain to a significantly disparate unlabeled target domain.
This problem exhibits the risk of negative transfer, where extraneous knowledge from the source domain adversely affects the target domain performance.
In response to this challenge, we propose a novel Online Selective Adversarial Alignment (OSAA) approach.
- Score: 42.85741244467877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) has achieved remarkable success in fault diagnosis, bringing significant benefits to diverse industrial applications. While most UDA methods focus on cross-working condition scenarios where the source and target domains are notably similar, real-world applications often grapple with severe domain shifts. We coin the term `distant domain adaptation problem' to describe the challenge of adapting from a labeled source domain to a significantly disparate unlabeled target domain. This problem exhibits the risk of negative transfer, where extraneous knowledge from the source domain adversely affects the target domain performance. Unfortunately, conventional UDA methods often falter in mitigating this negative transfer, leading to suboptimal performance. In response to this challenge, we propose a novel Online Selective Adversarial Alignment (OSAA) approach. Central to OSAA is its ability to dynamically identify and exclude distant source samples via an online gradient masking approach, focusing primarily on source samples that closely resemble the target samples. Furthermore, recognizing the inherent complexities in bridging the source and target domains, we construct an intermediate domain to act as a transitional domain and ease the adaptation process. Lastly, we develop a class-conditional adversarial adaptation to address the label distribution disparities while learning domain invariant representation to account for potential label distribution disparities between the domains. Through detailed experiments and ablation studies on two real-world datasets, we validate the superior performance of the OSAA method over state-of-the-art methods, underscoring its significant utility in practical scenarios with severe domain shifts.
Related papers
- Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation [3.367755441623275]
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain.
We propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA)
This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains.
arXiv Detail & Related papers (2023-07-26T09:40:19Z) - AVATAR: Adversarial self-superVised domain Adaptation network for TARget
domain [11.764601181046496]
This paper presents an unsupervised domain adaptation (UDA) method for predicting unlabeled target domain data.
We propose the Adversarial self-superVised domain Adaptation network for the TARget domain (AVATAR) algorithm.
Our proposed model significantly outperforms state-of-the-art methods on three UDA benchmarks.
arXiv Detail & Related papers (2023-04-28T20:31:56Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
We propose a novel domain adaptation method called cyclically disentangled feature translation network (CDFTN)
CDFTN generates pseudo-labeled samples that possess: 1) source domain-invariant liveness features and 2) target domain-specific content features, which are disentangled through domain adversarial training.
A robust classifier is trained based on the synthetic pseudo-labeled images under the supervision of source domain labels.
arXiv Detail & Related papers (2022-12-07T14:12:34Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
Unsupervised domain adaptation (UDA) is an important topic in the computer vision community.
We present a mechanism that regularizes cross-domain representation learning with a domain-agnostic prior (DAP)
Our research reveals that UDA benefits much from better proxies, possibly from other data modalities.
arXiv Detail & Related papers (2022-04-06T09:13:25Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Joint Distribution Alignment via Adversarial Learning for Domain
Adaptive Object Detection [11.262560426527818]
Unsupervised domain adaptive object detection aims to adapt a well-trained detector from its original source domain with rich labeled data to a new target domain with unlabeled data.
Recently, mainstream approaches perform this task through adversarial learning, yet still suffer from two limitations.
We propose a joint adaptive detection framework (JADF) to address the above challenges.
arXiv Detail & Related papers (2021-09-19T00:27:08Z) - Disentanglement-based Cross-Domain Feature Augmentation for Effective
Unsupervised Domain Adaptive Person Re-identification [87.72851934197936]
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching.
One challenge is how to generate target domain samples with reliable labels for training.
We propose a Disentanglement-based Cross-Domain Feature Augmentation strategy.
arXiv Detail & Related papers (2021-03-25T15:28:41Z) - Attract, Perturb, and Explore: Learning a Feature Alignment Network for
Semi-supervised Domain Adaptation [34.81203184926791]
We study the novel setting of the semi-supervised domain adaptation (SSDA) problem.
Our framework consists of three schemes, i.e., attraction, perturbation, and exploration.
Our method achieves state-of-the-art performances on all datasets.
arXiv Detail & Related papers (2020-07-18T09:26:25Z) - Domain Conditioned Adaptation Network [90.63261870610211]
We propose a Domain Conditioned Adaptation Network (DCAN) to excite distinct convolutional channels with a domain conditioned channel attention mechanism.
This is the first work to explore the domain-wise convolutional channel activation for deep DA networks.
arXiv Detail & Related papers (2020-05-14T04:23:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.