Optimal control of molecular spin qudits
- URL: http://arxiv.org/abs/2111.15313v1
- Date: Tue, 30 Nov 2021 11:50:46 GMT
- Title: Optimal control of molecular spin qudits
- Authors: Alberto Castro, Adrian Garcia Carrizo, David Zueco, and Fernando Luis
- Abstract summary: We demonstrate, numerically, the possibility of manipulating the spin states of molecular nanomagnets with shaped microwave pulses.
The state-to-state or full gate transformations can be performed in this way in shorter times than using simple monochromatic resonant pulses.
The application of optimal control techniques can facilitate the implementation of quantum technologies based on molecular spin qudits.
- Score: 58.720142291102135
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate, numerically, the possibility of manipulating the spin states
of molecular nanomagnets with shaped microwave pulses designed with quantum
optimal control theory techniques. The state-to-state or full gate
transformations can be performed in this way in shorter times than using simple
monochromatic resonant pulses. This enhancement in the operation rates can
therefore mitigate the effect of decoherence. The optimization protocols and
their potential for practical implementations are illustrated by simulations
performed for a simple molecular cluster hosting a single Gd$^{3+}$ ion. Its
eight accessible levels (corresponding to a total spin $S=7/2$) allow encoding
an $8$-level qudit or a system of three coupled qubits. All necessary gates
required for universal operation can be obtained with optimal pulses using the
intrinsic couplings present in this system. The application of optimal control
techniques can facilitate the implementation of quantum technologies based on
molecular spin qudits.
Related papers
- Optimal recoil-free state preparation in an optical atom tweezer [0.0]
We demonstrate the optimal implementation of the transition $|0rangle rightarrow |1rangle$ of two levels, driven by a single-photon Rabi pulse.
The Rabi pulse generates a photon recoil of the atom, due to the Lamb-Dicke coupling between the internal and motional degree of freedom.
We generate optimal protocols composed of a Rabi protocol and a force protocol, corresponding to dynamically displacing the tweezer.
arXiv Detail & Related papers (2024-11-04T16:53:46Z) - Energy control in a quantum oscillator using coherent control and engineered environment [83.88591755871734]
We develop and analyze a new method for manipulation of energy in a quantum harmonic oscillator using coherent, electromagnetic, field and incoherent control.
An approach to coherent and incoherent controls design based on the speed gradient algorithms is proposed.
A robustified speed-gradient control algorithm in differential form is also proposed.
arXiv Detail & Related papers (2024-03-25T20:44:46Z) - Blueprint of a Molecular Spin Quantum Processor [0.0]
We present the blueprint of a Molecular Spin Quantum Processor consisting of single Molecular Nanomagnets, acting as qudits.
We show how to implement a universal set of gates in such a platform and to readout the final qudit state.
arXiv Detail & Related papers (2023-05-02T18:00:06Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Pulse based Variational Quantum Optimal Control for hybrid quantum
computing [0.0]
This work studies pulse based variational quantum algorithms (VQAs)
VQAs are designed to determine the ground state of a quantum mechanical system by combining classical and quantum hardware.
arXiv Detail & Related papers (2022-02-17T21:43:54Z) - Implementation of the SMART protocol for global qubit control in silicon [0.623014942746354]
We implement a new protocol to control a single spin microwave in a silicon quantum dot.
Universal control of a single qubit is demonstrated using Stark modulated shift control via the local gate.
This work shows that future scalable spin qubit arrays could be operated using global microwave control and local gate addressability.
arXiv Detail & Related papers (2021-08-02T12:46:49Z) - Molecular spin qudits for quantum simulation of light-matter
interactions [62.223544431366896]
We show that molecular spin qudits provide an ideal platform to simulate the quantum dynamics of photon fields strongly interacting with matter.
The basic unit of the proposed molecular quantum simulator can be realized by a simple dimer of a spin 1/2 and a spin $S$ transition metal ion, solely controlled by microwave pulses.
arXiv Detail & Related papers (2021-03-17T15:03:12Z) - Counteracting dephasing in Molecular Nanomagnets by optimized qudit
encodings [60.1389381016626]
Molecular Nanomagnets may enable the implementation of qudit-based quantum error-correction codes.
A microscopic understanding of the errors corrupting the quantum information encoded in a molecular qudit is essential.
arXiv Detail & Related papers (2021-03-16T19:21:42Z) - A dissymmetric [Gd$_{2}$] coordination molecular dimer hosting six
addressable spin qubits [35.037949257476065]
We design, synthesize and fully characterize dissymetric molecular dimers hosting either one or two Gd(III) ions.
The [LaGd] and [GdLu] complexes provide realizations of distinct $d = 8$ spin qudits.
Experiments show that the relevant resonant transitions between different spin states can be coherently controlled.
arXiv Detail & Related papers (2020-06-15T16:35:31Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.