Precise Quantum Control of Molecular Rotation Toward a Desired Orientation
- URL: http://arxiv.org/abs/2502.10196v1
- Date: Fri, 14 Feb 2025 14:41:16 GMT
- Title: Precise Quantum Control of Molecular Rotation Toward a Desired Orientation
- Authors: Qian-Qian Hong, Daoyi Dong, Niels E. Henriksen, Franco Nori, Jun He, and Chuan-Cun Shu,
- Abstract summary: We propose an analytical framework to precisely control a limited set of quantum states using a well-designed laser pulse sequence with optimal amplitudes, phases, and delays.
This work marks a significant advancement in achieving precise control over multi-level subsystems within molecules.
It holds potential applications in molecular alignment and orientation, as well as in various interdisciplinary fields related to the precise quantum control of ultracold polar molecules.
- Score: 3.845860843908279
- License:
- Abstract: The lack of a direct map between control fields and desired control objectives poses a significant challenge in applying quantum control theory to quantum technologies. Here, we propose an analytical framework to precisely control a limited set of quantum states and construct desired coherent superpositions using a well-designed laser pulse sequence with optimal amplitudes, phases, and delays. This theoretical framework that corresponds to a multi-level pulse-area theorem establishes a straightforward mapping between the control parameters of the pulse sequence and the amplitudes and phases of rotational states within a specific subspace. As an example, we utilize this approach to generate 15 distinct and desired rotational superpositions of ultracold polar molecules, leading to 15 desired field-free molecular orientations. By optimizing the superposition of the lowest 16 rotational states, we demonstrate that this approach can achieve a maximum orientation value of $|\langle\cos\theta\rangle|_{\rm{max}}$ above 0.99, which is very close to the global optimal value of 1 that could be achieved in an infinite-dimensional state space. This work marks a significant advancement in achieving precise control over multi-level subsystems within molecules. It holds potential applications in molecular alignment and orientation, as well as in various interdisciplinary fields related to the precise quantum control of ultracold polar molecules, opening up considerable opportunities in molecular-based quantum techniques.
Related papers
- Optimal Control of Spin Qudits Subject to Decoherence Using Amplitude-and-Frequency-Constrained Pulses [44.99833362998488]
We introduce a formulation that allows us to bound the maximum amplitude and frequency of the signals.
The pulses we obtain consistently enhance operation fidelities compared to those achieved with Schr"odinger's equation.
arXiv Detail & Related papers (2024-03-23T10:10:38Z) - Pulse-controlled qubit in semiconductor double quantum dots [57.916342809977785]
We present a numerically-optimized multipulse framework for the quantum control of a single-electron charge qubit.
A novel control scheme manipulates the qubit adiabatically, while also retaining high speed and ability to perform a general single-qubit rotation.
arXiv Detail & Related papers (2023-03-08T19:00:02Z) - Quantum Coherent Control of a Single Molecular-Polariton Rotation [2.2482144023488346]
We present a combined analytical and numerical study for coherent terahertz control of a single molecular polariton.
The presence of a cavity strongly modifies the post-pulse orientation of the polariton, making it difficult to obtain its maximal degree of orientation.
This work offers a new strategy to study rotational dynamics in the strong-coupling regime and provides a method for complete quantum coherent control of a single molecular polariton.
arXiv Detail & Related papers (2022-12-22T12:37:55Z) - Multi-squeezed state generation and universal bosonic control via a
driven quantum Rabi model [68.8204255655161]
Universal control over a bosonic degree of freedom is key in the quest for quantum-based technologies.
Here we consider a single ancillary two-level system, interacting with the bosonic mode of interest via a driven quantum Rabi model.
We show that it is sufficient to induce the deterministic realization of a large class of Gaussian and non-Gaussian gates, which in turn provide universal bosonic control.
arXiv Detail & Related papers (2022-09-16T14:18:53Z) - Enhancing strontium clock atom interferometry using quantum optimal
control [0.09786690381850353]
We study QOC pulses for strontium clock interferometry and demonstrate their advantage over basic square pulses.
This could improve the scale of large momentum transfer in Sr clock interferometers, paving the way to achieve scientific goals.
arXiv Detail & Related papers (2022-07-26T23:56:33Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Optimal control of molecular spin qudits [58.720142291102135]
We demonstrate, numerically, the possibility of manipulating the spin states of molecular nanomagnets with shaped microwave pulses.
The state-to-state or full gate transformations can be performed in this way in shorter times than using simple monochromatic resonant pulses.
The application of optimal control techniques can facilitate the implementation of quantum technologies based on molecular spin qudits.
arXiv Detail & Related papers (2021-11-30T11:50:46Z) - Optimal three-state field-free molecular orientation with terahertz
pulses [0.0]
An optimal control field can be designed to generate maximum field-free orientation of molecules for three populated rotational states.
We devise a quantum coherent control scheme using two terahertz pulses and successfully apply it to the linear polar molecule HCN at ultracold temperature.
arXiv Detail & Related papers (2021-05-28T09:25:37Z) - Quantum control landscape for ultrafast generation of single-qubit phase
shift quantum gates [68.8204255655161]
We consider the problem of ultrafast controlled generation of single-qubit phase shift quantum gates.
Globally optimal control is a control which realizes the gate with maximal possible fidelity.
Trap is a control which is optimal only locally but not globally.
arXiv Detail & Related papers (2021-04-26T16:38:43Z) - Optimal control of a nitrogen-vacancy spin ensemble in diamond for
sensing in the pulsed domain [52.77024349608834]
Defects in solid state materials provide an ideal platform for quantum sensing.
Control of such an ensemble is challenging due to the spatial variation in both the defect energy levels and in any control field across a macroscopic sample.
We experimentally demonstrate that we can overcome these challenges using Floquet theory and optimal control optimization methods.
arXiv Detail & Related papers (2021-01-25T13:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.