論文の概要: Node-Level Differentially Private Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2111.15521v1
- Date: Tue, 23 Nov 2021 16:18:53 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-06 01:23:55.561999
- Title: Node-Level Differentially Private Graph Neural Networks
- Title(参考訳): ノードレベルの微分プライベートグラフニューラルネットワーク
- Authors: Ameya Daigavane, Gagan Madan, Aditya Sinha, Abhradeep Guha Thakurta,
Gaurav Aggarwal, Prateek Jain
- Abstract要約: グラフニューラルネットワーク(GNN)は、グラフ構造化データをモデル化するための一般的な手法である。
この研究は、ノードレベルのプライバシで1層GNNを学習する問題を正式に定義する。
強力な差分プライバシー保証を備えたアルゴリズムによるソリューションを提供する。
- 参考スコア(独自算出の注目度): 14.917945355629563
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graph Neural Networks (GNNs) are a popular technique for modelling
graph-structured data that compute node-level representations via aggregation
of information from the local neighborhood of each node. However, this
aggregation implies increased risk of revealing sensitive information, as a
node can participate in the inference for multiple nodes. This implies that
standard privacy preserving machine learning techniques, such as differentially
private stochastic gradient descent (DP-SGD) - which are designed for
situations where each data point participates in the inference for one point
only - either do not apply, or lead to inaccurate solutions. In this work, we
formally define the problem of learning 1-layer GNNs with node-level privacy,
and provide an algorithmic solution with a strong differential privacy
guarantee. Even though each node can be involved in the inference for multiple
nodes, by employing a careful sensitivity analysis anda non-trivial extension
of the privacy-by-amplification technique, our method is able to provide
accurate solutions with solid privacy parameters. Empirical evaluation on
standard benchmarks demonstrates that our method is indeed able to learn
accurate privacy preserving GNNs, while still outperforming standard
non-private methods that completely ignore graph information.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、各ノードの局所的な近傍からの情報収集を通じてノードレベルの表現を計算するグラフ構造化データをモデル化する一般的な手法である。
しかし、このアグリゲーションは、ノードが複数のノードの推論に参加することができるため、センシティブな情報を明らかにするリスクを増大させる。
これは、差分プライベート確率勾配降下(dp-sgd)のような、標準的なプライバシ保存機械学習技術が、各データポイントが1つのポイントのみの推論に参加している状況のために設計されていることを意味する。
本研究では,ノードレベルのプライバシを持つ1層GNNの学習問題を正式に定義し,高い差分プライバシー保証を持つアルゴリズムソリューションを提供する。
各ノードが複数のノードの推論に関与することができるが、注意深い感度分析と、プライバシ・バイ・アンプリフィケーション手法の非自明な拡張を用いることで、厳密なプライバシーパラメータを持つ正確なソリューションを提供することができる。
標準ベンチマークにおける実証的な評価は、我々の手法がグラフ情報を完全に無視する標準的非私的手法よりも優れていることを示している。
関連論文リスト
- Preserving Node-level Privacy in Graph Neural Networks [8.823710998526705]
グラフニューラルネットワーク(GNN)におけるノードレベルのプライバシの問題に対処するソリューションを提案する。
提案プロトコルは,1) 特定のノードサンプリング戦略と一連の調整操作を用いて所望の特性を持つサブグラフを生成するHeterPoissonと呼ばれるサンプリングルーチンと,2) 一般的に使用されるガウスノイズの代わりに対称ラプラスノイズを利用するランダム化ルーチンとからなる。
提案プロトコルは,実世界の5つのデータセットを用いた実験によって実証された,優れた性能でGNN学習を可能にする。
論文 参考訳(メタデータ) (2023-11-12T16:21:29Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
グラフ埋め込みは属性推論攻撃の影響を受けやすいため、攻撃者は学習したグラフ埋め込みからプライベートノード属性を推測することができる。
これらの懸念に対処するため、プライバシ保護グラフ埋め込み手法が登場した。
独立分散ペナルティを正規化項として支援し, PVGAE(Private Variational Graph AutoEncoders)と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-16T13:32:43Z) - Differentially Private Graph Neural Network with Importance-Grained
Noise Adaption [6.319864669924721]
ノードが個人や機密情報を表現している場合、グラフプライバシを保護するために、差分プライバシを持つグラフニューラルネットワーク(GNN)が提案されている。
ノードがプライベートにしておく必要があるが、GNNのトレーニングには不可欠である個人データを含む、重要度の高いプライバシの問題について検討する。
NAP-GNNはノード情報を保護するための適応差分プライバシーに基づくプライバシー保証付きノード単位のプライバシ保存GNNアルゴリズムである。
論文 参考訳(メタデータ) (2023-08-09T13:18:41Z) - Privacy-Preserved Neural Graph Similarity Learning [99.78599103903777]
本稿では,グラフ類似性学習のためのプライバシ保存型ニューラルグラフマッチングネットワークモデルPPGMを提案する。
再構成攻撃を防ぐため、提案モデルではデバイス間でノードレベルの表現を通信しない。
グラフプロパティに対する攻撃を軽減するため、両方のベクトルの情報を含む難読化機能は通信される。
論文 参考訳(メタデータ) (2022-10-21T04:38:25Z) - DPAR: Decoupled Graph Neural Networks with Node-Level Differential Privacy [30.15971370844865]
我々は,ノードとエッジが保護されるように,GNNをトレーニングするためのノードレベルの差分プライバシー(DP)の実現を目指している。
プライバシーとユーティリティのトレードオフが強化されたGNNをトレーニングするために,DPAR(Dariially Private Approximate Personalized PageRank)を用いたデカップリングGNNを提案する。
論文 参考訳(メタデータ) (2022-10-10T05:34:25Z) - GAP: Differentially Private Graph Neural Networks with Aggregation
Perturbation [19.247325210343035]
グラフニューラルネットワーク(GNN)は、ノード表現を学習するグラフデータ用に設計された強力なモデルである。
近年の研究では、グラフデータが機密情報を含む場合、GNNは重大なプライバシー上の懸念を生じさせることが示されている。
我々は,ノードとエッジのプライバシを保護する,差分的にプライベートなGNNであるGAPを提案する。
論文 参考訳(メタデータ) (2022-03-02T08:58:07Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
今回提案するグラフネットワーク層であるNode2Seqは,隣接ノードの重みを明示的に調整可能なノード埋め込みを学習する。
対象ノードに対して,当手法は注意メカニズムを介して隣接ノードをソートし,さらに1D畳み込みニューラルネットワーク(CNN)を用いて情報集約のための明示的な重み付けを行う。
また, 特徴学習のための非局所的情報を, 注意スコアに基づいて適応的に組み込むことを提案する。
論文 参考訳(メタデータ) (2021-01-06T03:05:37Z) - Self-supervised Learning on Graphs: Deep Insights and New Direction [66.78374374440467]
自己教師付き学習(SSL)は、ラベルのないデータにドメイン固有のプレテキストタスクを作成することを目的としている。
グラフニューラルネットワーク(GNN)の形でのグラフ領域へのディープラーニングの一般化への関心が高まっている。
論文 参考訳(メタデータ) (2020-06-17T20:30:04Z) - Locally Private Graph Neural Networks [12.473486843211573]
ノードデータプライバシ(ノードデータプライバシ)の問題として,グラフノードが機密性の高いデータをプライベートに保持する可能性について検討する。
我々は、正式なプライバシー保証を備えたプライバシー保護アーキテクチャに依存しないGNN学習アルゴリズムを開発した。
実世界のデータセット上で行った実験は、我々の手法が低プライバシー損失で満足度の高い精度を維持することができることを示した。
論文 参考訳(メタデータ) (2020-06-09T22:36:06Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
本稿では、EdgeNetの概念を通じて、最先端グラフニューラルネットワーク(GNN)を統一する一般的なフレームワークを提案する。
EdgeNetはGNNアーキテクチャであり、異なるノードが異なるパラメータを使って異なる隣人の情報を測定することができる。
これは、ノードが実行でき、既存のグラフ畳み込みニューラルネットワーク(GCNN)とグラフアテンションネットワーク(GAT)の1つの定式化の下で包含できる一般的な線形で局所的な操作である。
論文 参考訳(メタデータ) (2020-01-21T15:51:17Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
半教師付きノード分類の性能を高めるためのグラフ推論学習フレームワークを提案する。
推論過程の学習には,トレーニングノードから検証ノードへの構造関係のメタ最適化を導入する。
4つのベンチマークデータセットの総合的な評価は、最先端の手法と比較して提案したGILの優位性を示している。
論文 参考訳(メタデータ) (2020-01-17T02:52:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。