Pattern-Aware Data Augmentation for LiDAR 3D Object Detection
- URL: http://arxiv.org/abs/2112.00050v1
- Date: Tue, 30 Nov 2021 19:14:47 GMT
- Title: Pattern-Aware Data Augmentation for LiDAR 3D Object Detection
- Authors: Jordan S.K. Hu, Steven L. Waslander
- Abstract summary: We propose pattern-aware ground truth sampling, a data augmentation technique that downsamples an object's point cloud based on the LiDAR's characteristics.
We improve the performance of PV-RCNN on the car class by more than 0.7 percent on the KITTI validation split at distances greater than 25 m.
- Score: 7.394029879643516
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous driving datasets are often skewed and in particular, lack training
data for objects at farther distances from the ego vehicle. The imbalance of
data causes a performance degradation as the distance of the detected objects
increases. In this paper, we propose pattern-aware ground truth sampling, a
data augmentation technique that downsamples an object's point cloud based on
the LiDAR's characteristics. Specifically, we mimic the natural diverging point
pattern variation that occurs for objects at depth to simulate samples at
farther distances. Thus, the network has more diverse training examples and can
generalize to detecting farther objects more effectively. We evaluate against
existing data augmentation techniques that use point removal or perturbation
methods and find that our method outperforms all of them. Additionally, we
propose using equal element AP bins to evaluate the performance of 3D object
detectors across distance. We improve the performance of PV-RCNN on the car
class by more than 0.7 percent on the KITTI validation split at distances
greater than 25 m.
Related papers
- Study of Dropout in PointPillars with 3D Object Detection [0.0]
3D object detection is critical for autonomous driving, leveraging deep learning techniques to interpret LiDAR data.
This study provides an analysis of enhancing the performance of PointPillars model under various dropout rates.
arXiv Detail & Related papers (2024-09-01T09:30:54Z) - Depth-discriminative Metric Learning for Monocular 3D Object Detection [14.554132525651868]
We introduce a novel metric learning scheme that encourages the model to extract depth-discriminative features regardless of the visual attributes.
Our method consistently improves the performance of various baselines by 23.51% and 5.78% on average.
arXiv Detail & Related papers (2024-01-02T07:34:09Z) - VirtualPainting: Addressing Sparsity with Virtual Points and
Distance-Aware Data Augmentation for 3D Object Detection [3.5259183508202976]
We present an innovative approach that involves the generation of virtual LiDAR points using camera images.
We also enhance these virtual points with semantic labels obtained from image-based segmentation networks.
Our approach offers a versatile solution that can be seamlessly integrated into various 3D frameworks and 2D semantic segmentation methods.
arXiv Detail & Related papers (2023-12-26T18:03:05Z) - 3D Adversarial Augmentations for Robust Out-of-Domain Predictions [115.74319739738571]
We focus on improving the generalization to out-of-domain data.
We learn a set of vectors that deform the objects in an adversarial fashion.
We perform adversarial augmentation by applying the learned sample-independent vectors to the available objects when training a model.
arXiv Detail & Related papers (2023-08-29T17:58:55Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
In safety-critical settings, robustness on out-of-distribution and long-tail samples is fundamental to circumvent dangerous issues.
We substantially improve the generalization of 3D object detectors to out-of-domain data by taking into account deformed point clouds during training.
We propose and share open source CrashD: a synthetic dataset of realistic damaged and rare cars.
arXiv Detail & Related papers (2021-12-09T08:50:54Z) - Learnable Online Graph Representations for 3D Multi-Object Tracking [156.58876381318402]
We propose a unified and learning based approach to the 3D MOT problem.
We employ a Neural Message Passing network for data association that is fully trainable.
We show the merit of the proposed approach on the publicly available nuScenes dataset by achieving state-of-the-art performance of 65.6% AMOTA and 58% fewer ID-switches.
arXiv Detail & Related papers (2021-04-23T17:59:28Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - 3D Object Detection From LiDAR Data Using Distance Dependent Feature
Extraction [7.04185696830272]
This work proposes an improvement for 3D object detectors by taking into account the properties of LiDAR point clouds over distance.
Results show that training separate networks for close-range and long-range objects boosts performance for all KITTI benchmark difficulties.
arXiv Detail & Related papers (2020-03-02T13:16:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.