3D Object Detection From LiDAR Data Using Distance Dependent Feature
Extraction
- URL: http://arxiv.org/abs/2003.00888v2
- Date: Tue, 3 Mar 2020 07:47:20 GMT
- Title: 3D Object Detection From LiDAR Data Using Distance Dependent Feature
Extraction
- Authors: Guus Engels, Nerea Aranjuelo, Ignacio Arganda-Carreras, Marcos Nieto
and Oihana Otaegui
- Abstract summary: This work proposes an improvement for 3D object detectors by taking into account the properties of LiDAR point clouds over distance.
Results show that training separate networks for close-range and long-range objects boosts performance for all KITTI benchmark difficulties.
- Score: 7.04185696830272
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a new approach to 3D object detection that leverages the
properties of the data obtained by a LiDAR sensor. State-of-the-art detectors
use neural network architectures based on assumptions valid for camera images.
However, point clouds obtained from LiDAR are fundamentally different. Most
detectors use shared filter kernels to extract features which do not take into
account the range dependent nature of the point cloud features. To show this,
different detectors are trained on two splits of the KITTI dataset: close range
(objects up to 25 meters from LiDAR) and long-range. Top view images are
generated from point clouds as input for the networks. Combined results
outperform the baseline network trained on the full dataset with a single
backbone. Additional research compares the effect of using different input
features when converting the point cloud to image. The results indicate that
the network focuses on the shape and structure of the objects, rather than
exact values of the input. This work proposes an improvement for 3D object
detectors by taking into account the properties of LiDAR point clouds over
distance. Results show that training separate networks for close-range and
long-range objects boosts performance for all KITTI benchmark difficulties.
Related papers
- Sparse-to-Dense LiDAR Point Generation by LiDAR-Camera Fusion for 3D Object Detection [9.076003184833557]
We propose the LiDAR-Camera Augmentation Network (LCANet), a novel framework that reconstructs LiDAR point cloud data by fusing 2D image features.
LCANet fuses data from LiDAR sensors by projecting image features into the 3D space, integrating semantic information into the point cloud data.
This fusion effectively compensates for LiDAR's weakness in detecting objects at long distances, which are often represented by sparse points.
arXiv Detail & Related papers (2024-09-23T13:03:31Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - Pattern-Aware Data Augmentation for LiDAR 3D Object Detection [7.394029879643516]
We propose pattern-aware ground truth sampling, a data augmentation technique that downsamples an object's point cloud based on the LiDAR's characteristics.
We improve the performance of PV-RCNN on the car class by more than 0.7 percent on the KITTI validation split at distances greater than 25 m.
arXiv Detail & Related papers (2021-11-30T19:14:47Z) - VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and
Stereo Data Fusion [62.24001258298076]
VPFNet is a new architecture that cleverly aligns and aggregates the point cloud and image data at the virtual' points.
Our VPFNet achieves 83.21% moderate 3D AP and 91.86% moderate BEV AP on the KITTI test set, ranking the 1st since May 21th, 2021.
arXiv Detail & Related papers (2021-11-29T08:51:20Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
We propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images.
Our approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
arXiv Detail & Related papers (2020-09-09T20:23:27Z) - Cross-Modality 3D Object Detection [63.29935886648709]
We present a novel two-stage multi-modal fusion network for 3D object detection.
The whole architecture facilitates two-stage fusion.
Our experiments on the KITTI dataset show that the proposed multi-stage fusion helps the network to learn better representations.
arXiv Detail & Related papers (2020-08-16T11:01:20Z) - Expandable YOLO: 3D Object Detection from RGB-D Images [64.14512458954344]
This paper aims at constructing a light-weight object detector that inputs a depth and a color image from a stereo camera.
By extending the network architecture of YOLOv3 to 3D in the middle, it is possible to output in the depth direction.
Intersection over Uninon (IoU) in 3D space is introduced to confirm the accuracy of region extraction results.
arXiv Detail & Related papers (2020-06-26T07:32:30Z) - Stereo RGB and Deeper LIDAR Based Network for 3D Object Detection [40.34710686994996]
3D object detection has become an emerging task in autonomous driving scenarios.
Previous works process 3D point clouds using either projection-based or voxel-based models.
We propose the Stereo RGB and Deeper LIDAR framework which can utilize semantic and spatial information simultaneously.
arXiv Detail & Related papers (2020-06-09T11:19:24Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
Pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras.
PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs.
We introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end.
arXiv Detail & Related papers (2020-04-07T02:18:38Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
We leverage a 3D fully convolutional network for 3D point clouds.
We propose a novel and practical learning mechanism that densely predicts both a detection score and a description feature for each 3D point.
Our method achieves state-of-the-art results in both indoor and outdoor scenarios.
arXiv Detail & Related papers (2020-03-06T12:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.