論文の概要: Quantum Compiling
- arxiv url: http://arxiv.org/abs/2112.00187v1
- Date: Wed, 1 Dec 2021 00:06:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-06 04:58:42.478343
- Title: Quantum Compiling
- Title(参考訳): 量子コンパイル
- Authors: Marco Maronese and Lorenzo Moro and Lorenzo Rocutto and Enrico Prati
- Abstract要約: 量子コンパイルは、高レベルの量子アルゴリズムの計算層と物理量子ビットの層の間のギャップを埋める。
本稿では,ゲートモデル量子コンピュータと断熱量子コンピュータの量子コンパイルスタックについて概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum compiling fills the gap between the computing layer of high-level
quantum algorithms and the layer of physical qubits with their specific
properties and constraints. Quantum compiling is a hybrid between the
general-purpose compilers of computers, transforming high-level language to
assembly language and hardware synthesis by hardware description language,
where functions are automatically synthesized into customized hardware. Here we
review the quantum compiling stack of both gate model quantum computers and the
adiabatic quantum computers, respectively. The former involves low level qubit
control, quantum error correction, synthesis of short quantum circuits,
transpiling, while the latter involves the virtualization of qubits by
embedding of QUBO and HUBO problems on constrained graphs of physical qubits
and both quantum error suppression and correction. Commercial initiatives and
quantum compiling products are reviewed, including explicit programming
examples.
- Abstract(参考訳): 量子コンパイルは、高レベルの量子アルゴリズムの計算層と物理量子ビットの層の間のギャップを、特定の性質と制約で埋める。
量子コンパイル(quantum compiling)は、高レベル言語をアセンブリ言語に変換するコンピュータの汎用コンパイラと、関数をカスタマイズされたハードウェアに自動合成するハードウェア記述言語によるハードウェア合成のハイブリッドである。
本稿では,ゲートモデル量子コンピュータと断熱量子コンピュータの両方の量子コンパイルスタックについて概説する。
前者は低レベルの量子ビット制御、量子誤り訂正、短い量子回路の合成、トランスパイリング、後者は量子ビットの仮想化を、物理的量子ビットの制約付きグラフ上にquboとhuboの問題を埋め込み、量子エラーの抑制と修正の両方によって行う。
商用イニシアチブと量子コンパイル製品は、明示的なプログラミング例を含むレビューされる。
関連論文リスト
- Quantum Compiling with Reinforcement Learning on a Superconducting Processor [55.135709564322624]
超伝導プロセッサのための強化学習型量子コンパイラを開発した。
短絡の新規・ハードウェア対応回路の発見能力を示す。
本研究は,効率的な量子コンパイルのためのハードウェアによるソフトウェア設計を実証する。
論文 参考訳(メタデータ) (2024-06-18T01:49:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - The Future of Quantum Computing with Superconducting Qubits [2.6668731290542222]
量子処理ユニット(QPU)の出現に伴い、計算パラダイムの分岐点が見られます。
超多項式スピードアップによる計算の可能性を抽出し、量子アルゴリズムを実現するには、量子誤り訂正技術の大幅な進歩が必要になる可能性が高い。
長期的には、より効率的な量子誤り訂正符号を実現するために、2次元トポロジ以上の量子ビット接続を利用するハードウェアが見られます。
論文 参考訳(メタデータ) (2022-09-14T18:00:03Z) - Quantum Netlist Compiler (QNC) [0.0]
本稿では、任意のユニタリ演算子や量子アルゴリズムの初期状態をOpenQASM-2.0回路に変換する量子ネットリストコンパイラ(QNC)を紹介する。
その結果、QNCは量子回路最適化に適しており、実際に競合する成功率の回路を生産していることがわかった。
論文 参考訳(メタデータ) (2022-09-02T05:00:38Z) - Full-stack quantum computing systems in the NISQ era: algorithm-driven
and hardware-aware compilation techniques [1.3496450124792878]
現在のフルスタック量子コンピューティングシステムの概要について概説する。
我々は、隣接する層間の密な共設計と垂直な層間設計の必要性を強調します。
論文 参考訳(メタデータ) (2022-04-13T13:26:56Z) - Quantum compiling with a variational instruction set for accurate and
fast quantum computing [1.0131895986034314]
量子コンピューティングの高速かつ高精度な量子変分命令セット(QuVIS)を提案する。
QuVISにおけるゲートを実現するためのキュービットの制御は、微細な時間最適化アルゴリズムを用いて変動的に達成される。
量子ハードウェアにおける同じ要件により、QuVISの時間コストはQuMISの時間の半分以下に削減される。
論文 参考訳(メタデータ) (2022-03-29T13:53:19Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Extending C++ for Heterogeneous Quantum-Classical Computing [56.782064931823015]
qcorはC++とコンパイラの実装の言語拡張で、異種量子古典プログラミング、コンパイル、単一ソースコンテキストでの実行を可能にする。
我々の研究は、量子言語で高レベルな量子カーネル(関数)を表現できる、第一種C++コンパイラを提供する。
論文 参考訳(メタデータ) (2020-10-08T12:49:07Z) - OpenQL : A Portable Quantum Programming Framework for Quantum
Accelerators [0.0]
我々は,高レベルな量子プログラミング言語と関連する量子コンパイラを含む,OpenQLという量子プログラミングフレームワークを提案する。
実験の結果,OpenQLは超伝導量子ビットとSi-Spin量子ビットという2つの異なる量子ビット技術上で,同じハイレベルなアルゴリズムの実行を可能にすることがわかった。
論文 参考訳(メタデータ) (2020-05-27T11:23:16Z) - Deterministic correction of qubit loss [48.43720700248091]
量子ビットの損失は、大規模かつフォールトトレラントな量子情報プロセッサに対する根本的な障害の1つである。
トポロジカル曲面符号の最小インスタンスに対して、量子ビット損失検出と補正の完全なサイクルの実装を実験的に実証した。
論文 参考訳(メタデータ) (2020-02-21T19:48:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。