Learning from Mistakes based on Class Weighting with Application to
Neural Architecture Search
- URL: http://arxiv.org/abs/2112.00275v1
- Date: Wed, 1 Dec 2021 04:56:49 GMT
- Title: Learning from Mistakes based on Class Weighting with Application to
Neural Architecture Search
- Authors: Jay Gala, Pengtao Xie
- Abstract summary: We propose a simple and effective multi-level optimization framework called learning from mistakes (LFM)
The primary objective is to train a model to perform effectively on target tasks by using a re-weighting technique to prevent similar mistakes in the future.
In this formulation, we learn the class weights by minimizing the validation loss of the model and re-train the model with the synthetic data from the image generator weighted by class-wise performance and real data.
- Score: 12.317568257671427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning from mistakes is an effective learning approach widely used in human
learning, where a learner pays greater focus on mistakes to circumvent them in
the future. It aids in improving the overall learning outcomes. In this work,
we aim to investigate how effectively this exceptional learning ability can be
used to improve machine learning models as well. We propose a simple and
effective multi-level optimization framework called learning from mistakes
(LFM), inspired by mistake-driven learning to train better machine learning
models. Our LFM framework consists of a formulation involving three learning
stages. The primary objective is to train a model to perform effectively on
target tasks by using a re-weighting technique to prevent similar mistakes in
the future. In this formulation, we learn the class weights by minimizing the
validation loss of the model and re-train the model with the synthetic data
from the image generator weighted by class-wise performance and real data. We
apply our LFM framework for differential architecture search methods on image
classification datasets such as CIFAR and ImageNet, where the results
demonstrate the effectiveness of our proposed strategy.
Related papers
- LLMs-as-Instructors: Learning from Errors Toward Automating Model Improvement [93.38736019287224]
"LLMs-as-Instructors" framework autonomously enhances the training of smaller target models.
Inspired by the theory of "Learning from Errors", this framework employs an instructor LLM to meticulously analyze the specific errors within a target model.
Within this framework, we implement two strategies: "Learning from Error," which focuses solely on incorrect responses to tailor training data, and "Learning from Error by Contrast", which uses contrastive learning to analyze both correct and incorrect responses for a deeper understanding of errors.
arXiv Detail & Related papers (2024-06-29T17:16:04Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
Recent research has begun to approach large language models (LLMs) unlearning via gradient ascent (GA)
Despite their simplicity and efficiency, we suggest that GA-based methods face the propensity towards excessive unlearning.
We propose several controlling methods that can regulate the extent of excessive unlearning.
arXiv Detail & Related papers (2024-06-13T14:41:00Z) - Learning Objective-Specific Active Learning Strategies with Attentive
Neural Processes [72.75421975804132]
Learning Active Learning (LAL) suggests to learn the active learning strategy itself, allowing it to adapt to the given setting.
We propose a novel LAL method for classification that exploits symmetry and independence properties of the active learning problem.
Our approach is based on learning from a myopic oracle, which gives our model the ability to adapt to non-standard objectives.
arXiv Detail & Related papers (2023-09-11T14:16:37Z) - Model Sparsity Can Simplify Machine Unlearning [33.18951938708467]
In response to recent data regulation requirements, machine unlearning (MU) has emerged as a critical process.
Our study introduces a novel model-based perspective: model sparsification via weight pruning.
We show in both theory and practice that model sparsity can boost the multi-criteria unlearning performance of an approximate unlearner.
arXiv Detail & Related papers (2023-04-11T02:12:02Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Learnability of Learning Performance and Its Application to Data
Valuation [11.78594243870616]
In most machine learning (ML) tasks, evaluating learning performance on a given dataset requires intensive computation.
The ability to efficiently estimate learning performance may benefit a wide spectrum of applications, such as active learning, data quality management, and data valuation.
Recent empirical studies show that for many common ML models, one can accurately learn a parametric model that predicts learning performance for any given input datasets using a small amount of samples.
arXiv Detail & Related papers (2021-07-13T18:56:04Z) - Interleaving Learning, with Application to Neural Architecture Search [12.317568257671427]
We propose a novel machine learning framework referred to as interleaving learning (IL)
In our framework, a set of models collaboratively learn a data encoder in an interleaving fashion.
We apply interleaving learning to search neural architectures for image classification on CIFAR-10, CIFAR-100, and ImageNet.
arXiv Detail & Related papers (2021-03-12T00:54:22Z) - Small-Group Learning, with Application to Neural Architecture Search [17.86826990290058]
In human learning, a small group of students work together towards the same learning objective, where they express their understanding of a topic to their peers, compare their ideas, and help each other to trouble-shoot problems.
In this paper, we aim to investigate whether this human learning method can be borrowed to train better machine learning models, by developing a novel ML framework -- small-group learning (SGL)
SGL is formulated as a multi-level optimization framework consisting of three learning stages: each learner trains a model independently and uses this model to perform pseudo-labeling; each learner trains another model using datasets pseudo-
arXiv Detail & Related papers (2020-12-23T05:56:47Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Learning to Reweight with Deep Interactions [104.68509759134878]
We propose an improved data reweighting algorithm, in which the student model provides its internal states to the teacher model.
Experiments on image classification with clean/noisy labels and neural machine translation empirically demonstrate that our algorithm makes significant improvement over previous methods.
arXiv Detail & Related papers (2020-07-09T09:06:31Z) - Learning to Rank Learning Curves [15.976034696758148]
We present a new method that saves computational budget by terminating poor configurations early on in the training.
We show that our model is able to effectively rank learning curves without having to observe many or very long learning curves.
arXiv Detail & Related papers (2020-06-05T10:49:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.