論文の概要: Learning Transformer Features for Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2112.00485v1
- Date: Wed, 1 Dec 2021 13:23:00 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-02 20:45:47.290238
- Title: Learning Transformer Features for Image Quality Assessment
- Title(参考訳): 画像品質評価のための学習用トランスフォーマー
- Authors: Chao Zeng and Sam Kwong
- Abstract要約: 本稿では,CNNバックボーンとトランスフォーマーエンコーダを用いて特徴抽出を行うIQAフレームワークを提案する。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
- 参考スコア(独自算出の注目度): 53.51379676690971
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Objective image quality evaluation is a challenging task, which aims to
measure the quality of a given image automatically. According to the
availability of the reference images, there are Full-Reference and No-Reference
IQA tasks, respectively. Most deep learning approaches use regression from deep
features extracted by Convolutional Neural Networks. For the FR task, another
option is conducting a statistical comparison on deep features. For all these
methods, non-local information is usually neglected. In addition, the
relationship between FR and NR tasks is less explored. Motivated by the recent
success of transformers in modeling contextual information, we propose a
unified IQA framework that utilizes CNN backbone and transformer encoder to
extract features. The proposed framework is compatible with both FR and NR
modes and allows for a joint training scheme. Evaluation experiments on three
standard IQA datasets, i.e., LIVE, CSIQ and TID2013, and KONIQ-10K, show that
our proposed model can achieve state-of-the-art FR performance. In addition,
comparable NR performance is achieved in extensive experiments, and the results
show that the NR performance can be leveraged by the joint training scheme.
- Abstract(参考訳): 目的画像の品質評価は,画像の品質を自動的に測定することを目的とした課題である。
参照画像の可用性に応じて、Full-ReferenceとNo-Reference IQAタスクがある。
ほとんどのディープラーニングアプローチでは、畳み込みニューラルネットワークによって抽出された深い特徴からの回帰を用いる。
FRタスクの別の選択肢は、深い特徴に関する統計的比較を行うことである。
これらの手法では、非局所情報は無視されることが多い。
さらに、FRタスクとNRタスクの関係は明らかになっていない。
近年のコンテクスト情報モデリングにおけるトランスフォーマーの成功により,CNNバックボーンとトランスフォーマーエンコーダを利用した統合IQAフレームワークが提案されている。
提案するフレームワークはFRモードとNRモードの両方と互換性があり、共同トレーニング方式が可能である。
LIVE,CSIQ,TID2013,KONIQ-10Kの3つの標準IQAデータセットの評価実験により,提案モデルが最先端FR性能を実現することを示す。
さらに,広範囲な実験で比較したNR性能を達成し,共同学習手法によりNR性能を活用できることが示唆された。
関連論文リスト
- Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - A Lightweight Parallel Framework for Blind Image Quality Assessment [7.9562077122537875]
ブラインド画像品質評価(BIQA)のための軽量並列フレームワーク(LPF)を提案する。
まず,事前学習した特徴抽出ネットワークを用いて視覚特徴を抽出し,視覚特徴を変換するための簡易で効果的な特徴埋め込みネットワーク(FEN)を構築した。
本稿では,サンプルレベルのカテゴリ予測タスクとバッチレベルの品質比較タスクを含む,新たな2つのサブタスクを提案する。
論文 参考訳(メタデータ) (2024-02-19T10:56:58Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
本稿では,新しいコントラスト学習 (Contrastive Learning, SCL) と NR-IQA モデル SaTQA を提案する。
まず、SCLによる大規模合成データセット上にモデルをトレーニングし、様々な歪みタイプとレベルの画像の劣化特徴を抽出する。
画像から歪み情報を抽出するために,CNNインダクティブバイアスとTransformerの長期依存性モデリング機能を組み合わせることで,マルチストリームブロック(MSB)を組み込んだバックボーンネットワークを提案する。
7つの標準IQAデータセットの実験結果から、SaTQAは合成データセットと認証データセットの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-12T06:01:41Z) - You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment [45.62136459502005]
本稿では,完全な参照 (FR) と非参照 (NR) IQA を行うネットワークを提案する。
まず、入力画像から多レベル特徴を抽出するためにエンコーダを用いる。
FRおよびNR入力のユニバーサルアダプタとして階層的注意(HA)モジュールを提案する。
エンコーダの浅い層と深い層との間の特徴相関を調べるために, セマンティック・ディストーション・アウェア (SDA) モジュールを提案する。
論文 参考訳(メタデータ) (2023-10-14T11:03:04Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
知覚ビデオ品質評価(VQA)は、多くのストリーミングおよびビデオ共有プラットフォームにおいて不可欠な要素である。
本稿では,視覚的に関連のある映像品質表現を自己指導的に学習する問題について考察する。
本研究は, 自己教師型学習を用いて, 知覚力による説得力のある表現が得られることを示す。
論文 参考訳(メタデータ) (2022-06-29T15:22:01Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - Learning Deep Interleaved Networks with Asymmetric Co-Attention for
Image Restoration [65.11022516031463]
本稿では,高品質(本社)画像再構成のために,異なる状態の情報をどのように組み合わせるべきかを学習するディープインターリーブドネットワーク(DIN)を提案する。
本稿では,各インターリーブノードにアタッチメントされた非対称なコアテンション(AsyCA)を提案し,その特性依存性をモデル化する。
提案したDINはエンドツーエンドで訓練でき、様々な画像復元タスクに適用できる。
論文 参考訳(メタデータ) (2020-10-29T15:32:00Z) - No-Reference Image Quality Assessment via Feature Fusion and Multi-Task
Learning [29.19484863898778]
ブラインドまたはノン参照画像品質評価(NR-IQA)は基本的な問題であり、未解決であり、難しい問題である。
マルチタスク学習に基づく簡易かつ効果的な汎用的ノンリフレクション(NR)画像品質評価フレームワークを提案する。
このモデルでは、歪み型と主観的な人間のスコアを用いて画質を推定する。
論文 参考訳(メタデータ) (2020-06-06T05:04:10Z) - MetaIQA: Deep Meta-learning for No-Reference Image Quality Assessment [73.55944459902041]
本稿では,深層メタラーニングに基づく非参照IQA尺度を提案する。
まず、様々な歪みに対してNR-IQAタスクを収集する。
次にメタラーニングを用いて、多彩な歪みによって共有される事前知識を学習する。
大規模な実験により、提案された計量は最先端の技術を大きなマージンで上回ることを示した。
論文 参考訳(メタデータ) (2020-04-11T23:36:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。