FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer
Using Neural Generative Adversarial Networks
- URL: http://arxiv.org/abs/2112.00532v1
- Date: Wed, 1 Dec 2021 14:42:03 GMT
- Title: FaceTuneGAN: Face Autoencoder for Convolutional Expression Transfer
Using Neural Generative Adversarial Networks
- Authors: Nicolas Olivier, Kelian Baert, Fabien Danieau, Franck Multon, Quentin
Avril
- Abstract summary: We present FaceTuneGAN, a new 3D face model representation decomposing and encoding separately facial identity and facial expression.
We propose a first adaptation of image-to-image translation networks, that have successfully been used in the 2D domain, to 3D face geometry.
- Score: 0.7043489166804575
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present FaceTuneGAN, a new 3D face model representation
decomposing and encoding separately facial identity and facial expression. We
propose a first adaptation of image-to-image translation networks, that have
successfully been used in the 2D domain, to 3D face geometry. Leveraging
recently released large face scan databases, a neural network has been trained
to decouple factors of variations with a better knowledge of the face, enabling
facial expressions transfer and neutralization of expressive faces.
Specifically, we design an adversarial architecture adapting the base
architecture of FUNIT and using SpiralNet++ for our convolutional and sampling
operations. Using two publicly available datasets (FaceScape and CoMA),
FaceTuneGAN has a better identity decomposition and face neutralization than
state-of-the-art techniques. It also outperforms classical deformation transfer
approach by predicting blendshapes closer to ground-truth data and with less of
undesired artifacts due to too different facial morphologies between source and
target.
Related papers
- G2Face: High-Fidelity Reversible Face Anonymization via Generative and Geometric Priors [71.69161292330504]
Reversible face anonymization seeks to replace sensitive identity information in facial images with synthesized alternatives.
This paper introduces Gtextsuperscript2Face, which leverages both generative and geometric priors to enhance identity manipulation.
Our method outperforms existing state-of-the-art techniques in face anonymization and recovery, while preserving high data utility.
arXiv Detail & Related papers (2024-08-18T12:36:47Z) - Optimal-Landmark-Guided Image Blending for Face Morphing Attacks [8.024953195407502]
We propose a novel approach for conducting face morphing attacks, which utilizes optimal-landmark-guided image blending.
Our proposed method overcomes the limitations of previous approaches by optimizing the morphing landmarks and using Graph Convolutional Networks (GCNs) to combine landmark and appearance features.
arXiv Detail & Related papers (2024-01-30T03:45:06Z) - Face Transformer: Towards High Fidelity and Accurate Face Swapping [54.737909435708936]
Face swapping aims to generate swapped images that fuse the identity of source faces and the attributes of target faces.
This paper presents Face Transformer, a novel face swapping network that can accurately preserve source identities and target attributes simultaneously.
arXiv Detail & Related papers (2023-04-05T15:51:44Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
StyleGAN-based approaches to face morphing are among the leading techniques.
We propose a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods.
arXiv Detail & Related papers (2023-02-18T19:09:11Z) - Implicit Neural Deformation for Multi-View Face Reconstruction [43.88676778013593]
We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
arXiv Detail & Related papers (2021-12-05T07:02:53Z) - HifiFace: 3D Shape and Semantic Prior Guided High Fidelity Face Swapping [116.1022638063613]
We propose HifiFace, which can preserve the face shape of the source face and generate photo-realistic results.
We introduce the Semantic Facial Fusion module to optimize the combination of encoder and decoder features.
arXiv Detail & Related papers (2021-06-18T07:39:09Z) - Multi-channel Deep 3D Face Recognition [4.726009758066045]
The accuracy of 2D face recognition is still challenged by the change of pose, illumination, make-up, and expression.
We propose a multi-Channel deep 3D face network for face recognition based on 3D face data.
The face recognition accuracy of the multi-Channel deep 3D face network has achieved 98.6.
arXiv Detail & Related papers (2020-09-30T15:29:05Z) - Face Super-Resolution Guided by 3D Facial Priors [92.23902886737832]
We propose a novel face super-resolution method that explicitly incorporates 3D facial priors which grasp the sharp facial structures.
Our work is the first to explore 3D morphable knowledge based on the fusion of parametric descriptions of face attributes.
The proposed 3D priors achieve superior face super-resolution results over the state-of-the-arts.
arXiv Detail & Related papers (2020-07-18T15:26:07Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.