Implicit Neural Deformation for Multi-View Face Reconstruction
- URL: http://arxiv.org/abs/2112.02494v1
- Date: Sun, 5 Dec 2021 07:02:53 GMT
- Title: Implicit Neural Deformation for Multi-View Face Reconstruction
- Authors: Moran Li, Haibin Huang, Yi Zheng, Mengtian Li, Nong Sang, Chongyang Ma
- Abstract summary: We present a new method for 3D face reconstruction from multi-view RGB images.
Unlike previous methods which are built upon 3D morphable models, our method leverages an implicit representation to encode rich geometric features.
Our experimental results on several benchmark datasets demonstrate that our approach outperforms alternative baselines and achieves superior face reconstruction results compared to state-of-the-art methods.
- Score: 43.88676778013593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we present a new method for 3D face reconstruction from
multi-view RGB images. Unlike previous methods which are built upon 3D
morphable models (3DMMs) with limited details, our method leverages an implicit
representation to encode rich geometric features. Our overall pipeline consists
of two major components, including a geometry network, which learns a
deformable neural signed distance function (SDF) as the 3D face representation,
and a rendering network, which learns to render on-surface points of the neural
SDF to match the input images via self-supervised optimization. To handle
in-the-wild sparse-view input of the same target with different expressions at
test time, we further propose residual latent code to effectively expand the
shape space of the learned implicit face representation, as well as a novel
view-switch loss to enforce consistency among different views. Our experimental
results on several benchmark datasets demonstrate that our approach outperforms
alternative baselines and achieves superior face reconstruction results
compared to state-of-the-art methods.
Related papers
- Learning Topology Uniformed Face Mesh by Volume Rendering for Multi-view Reconstruction [40.45683488053611]
Face meshes in consistent topology serve as the foundation for many face-related applications.
We propose a mesh volume rendering method that enables directly optimizing mesh geometry while preserving topology.
Key innovation lies in spreading sparse mesh features into the surrounding space to simulate radiance field required for volume rendering.
arXiv Detail & Related papers (2024-04-08T15:25:50Z) - 3D Facial Expressions through Analysis-by-Neural-Synthesis [30.2749903946587]
SMIRK (Spatial Modeling for Image-based Reconstruction of Kinesics) faithfully reconstructs expressive 3D faces from images.
We identify two key limitations in existing methods: shortcomings in their self-supervised training formulation, and a lack of expression diversity in the training images.
Our qualitative, quantitative and particularly our perceptual evaluations demonstrate that SMIRK achieves the new state-of-the art performance on accurate expression reconstruction.
arXiv Detail & Related papers (2024-04-05T14:00:07Z) - DiViNeT: 3D Reconstruction from Disparate Views via Neural Template
Regularization [7.488962492863031]
We present a volume rendering-based neural surface reconstruction method that takes as few as three disparate RGB images as input.
Our key idea is to regularize the reconstruction, which is severely ill-posed and leaving significant gaps between the sparse views.
Our approach achieves the best reconstruction quality among existing methods in the presence of such sparse views.
arXiv Detail & Related papers (2023-06-07T18:05:14Z) - A Hierarchical Representation Network for Accurate and Detailed Face
Reconstruction from In-The-Wild Images [15.40230841242637]
We present a novel hierarchical representation network (HRN) to achieve accurate and detailed face reconstruction from a single image.
Our framework can be extended to a multi-view fashion by considering detail consistency of different views.
Our method outperforms the existing methods in both reconstruction accuracy and visual effects.
arXiv Detail & Related papers (2023-02-28T09:24:36Z) - Pixel2Mesh++: 3D Mesh Generation and Refinement from Multi-View Images [82.32776379815712]
We study the problem of shape generation in 3D mesh representation from a small number of color images with or without camera poses.
We adopt to further improve the shape quality by leveraging cross-view information with a graph convolution network.
Our model is robust to the quality of the initial mesh and the error of camera pose, and can be combined with a differentiable function for test-time optimization.
arXiv Detail & Related papers (2022-04-21T03:42:31Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3D Morphable Model (3DMM) fitting has widely benefited face analysis due to its strong 3D priori.
Previous reconstructed 3D faces suffer from degraded visual verisimilitude due to the loss of fine-grained geometry.
This paper proposes a complete solution to capture the personalized shape so that the reconstructed shape looks identical to the corresponding person.
arXiv Detail & Related papers (2022-04-09T03:46:18Z) - H3D-Net: Few-Shot High-Fidelity 3D Head Reconstruction [27.66008315400462]
Recent learning approaches that implicitly represent surface geometry have shown impressive results in the problem of multi-view 3D reconstruction.
We tackle these limitations for the specific problem of few-shot full 3D head reconstruction.
We learn a shape model of 3D heads from thousands of incomplete raw scans using implicit representations.
arXiv Detail & Related papers (2021-07-26T23:04:18Z) - Inverting Generative Adversarial Renderer for Face Reconstruction [58.45125455811038]
In this work, we introduce a novel Generative Adversa Renderer (GAR)
GAR learns to model the complicated real-world image, instead of relying on the graphics rules, it is capable of producing realistic images.
Our method achieves state-of-the-art performances on multiple face reconstruction.
arXiv Detail & Related papers (2021-05-06T04:16:06Z) - Neural Geometric Level of Detail: Real-time Rendering with Implicit 3D
Shapes [77.6741486264257]
We introduce an efficient neural representation that, for the first time, enables real-time rendering of high-fidelity neural SDFs.
We show that our representation is 2-3 orders of magnitude more efficient in terms of rendering speed compared to previous works.
arXiv Detail & Related papers (2021-01-26T18:50:22Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
We investigate the problem of learning to generate 3D parametric surface representations for novel object instances, as seen from one or more views.
We design neural networks capable of generating high-quality parametric 3D surfaces which are consistent between views.
Our method is supervised and trained on a public dataset of shapes from common object categories.
arXiv Detail & Related papers (2020-08-18T06:33:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.