A Review of Web Infodemic Analysis and Detection Trends across
Multi-modalities using Deep Neural Networks
- URL: http://arxiv.org/abs/2112.00803v1
- Date: Tue, 23 Nov 2021 16:02:28 GMT
- Title: A Review of Web Infodemic Analysis and Detection Trends across
Multi-modalities using Deep Neural Networks
- Authors: Chahat Raj, Priyanka Meel
- Abstract summary: Fake news detection is one of the most analyzed and prominent areas of research.
Facebook, Reddit, WhatsApp, YouTube, and other social applications are gradually gaining attention in this emerging field.
This review primarily deals with multi-modal fake news detection techniques that include images, videos, and their combinations with text.
- Score: 3.42658286826597
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fake news and misinformation are a matter of concern for people around the
globe. Users of the internet and social media sites encounter content with
false information much frequently. Fake news detection is one of the most
analyzed and prominent areas of research. These detection techniques apply
popular machine learning and deep learning algorithms. Previous work in this
domain covers fake news detection vastly among text circulating online.
Platforms that have extensively been observed and analyzed include news
websites and Twitter. Facebook, Reddit, WhatsApp, YouTube, and other social
applications are gradually gaining attention in this emerging field.
Researchers are analyzing online data based on multiple modalities composed of
text, image, video, speech, and other contributing factors. The combination of
various modalities has resulted in efficient fake news detection. At present,
there is an abundance of surveys consolidating textual fake news detection
algorithms. This review primarily deals with multi-modal fake news detection
techniques that include images, videos, and their combinations with text. We
provide a comprehensive literature survey of eighty articles presenting
state-of-the-art detection techniques, thereby identifying research gaps and
building a pathway for researchers to further advance this domain.
Related papers
- Finding Fake News Websites in the Wild [0.0860395700487494]
We propose a novel methodology for identifying websites responsible for creating and disseminating misinformation content.
We validate our approach on Twitter by examining various execution modes and contexts.
arXiv Detail & Related papers (2024-07-09T18:00:12Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Combining Machine Learning with Knowledge Engineering to detect Fake
News in Social Networks-a survey [0.7120858995754653]
In the news media and social media the information is spread highspeed but without accuracy and hence detection mechanism should be able to predict news fast enough to tackle the dissemination of fake news.
In this paper we present what is fake news, importance of fake news, overall impact of fake news on different areas, different ways to detect fake news on social media, existing detections algorithms that can help us to overcome the issue.
arXiv Detail & Related papers (2022-01-20T07:43:15Z) - A Study of Fake News Reading and Annotating in Social Media Context [1.0499611180329804]
We present an eye-tracking study, in which we let 44 lay participants to casually read through a social media feed containing posts with news articles, some of which were fake.
In a second run, we asked the participants to decide on the truthfulness of these articles.
We also describe a follow-up qualitative study with a similar scenario but this time with 7 expert fake news annotators.
arXiv Detail & Related papers (2021-09-26T08:11:17Z) - Surveying the Research on Fake News in Social Media: a Tale of Networks
and Language [0.0]
The history of journalism and news diffusion is tightly coupled with the effort to dispel hoaxes, misinformation, propaganda, unverified rumours, poor reporting, and messages containing hate and divisions.
With the explosive growth of online social media and billions of individuals engaged with consuming, creating, and sharing news, this ancient problem has surfaced with a renewed intensity.
This has triggered many researchers to develop new methods for studying, understanding, detecting, and preventing fake-news diffusion.
arXiv Detail & Related papers (2021-09-13T14:10:44Z) - Stance Detection with BERT Embeddings for Credibility Analysis of
Information on Social Media [1.7616042687330642]
We propose a model for detecting fake news using stance as one of the features along with the content of the article.
Our work interprets the content with automatic feature extraction and the relevance of the text pieces.
The experiment conducted on the real-world dataset indicates that our model outperforms the previous work and enables fake news detection with an accuracy of 95.32%.
arXiv Detail & Related papers (2021-05-21T10:46:43Z) - User Preference-aware Fake News Detection [61.86175081368782]
Existing fake news detection algorithms focus on mining news content for deceptive signals.
We propose a new framework, UPFD, which simultaneously captures various signals from user preferences by joint content and graph modeling.
arXiv Detail & Related papers (2021-04-25T21:19:24Z) - Machine Learning Explanations to Prevent Overtrust in Fake News
Detection [64.46876057393703]
This research investigates the effects of an Explainable AI assistant embedded in news review platforms for combating the propagation of fake news.
We design a news reviewing and sharing interface, create a dataset of news stories, and train four interpretable fake news detection algorithms.
For a deeper understanding of Explainable AI systems, we discuss interactions between user engagement, mental model, trust, and performance measures in the process of explaining.
arXiv Detail & Related papers (2020-07-24T05:42:29Z) - A Deep Learning Approach for Automatic Detection of Fake News [47.00462375817434]
We propose two models based on deep learning for solving fake news detection problem in online news contents of multiple domains.
We evaluate our techniques on the two recently released datasets, namely FakeNews AMT and Celebrity for fake news detection.
arXiv Detail & Related papers (2020-05-11T09:07:46Z) - Leveraging Multi-Source Weak Social Supervision for Early Detection of
Fake News [67.53424807783414]
Social media has greatly enabled people to participate in online activities at an unprecedented rate.
This unrestricted access also exacerbates the spread of misinformation and fake news online which might cause confusion and chaos unless being detected early for its mitigation.
We jointly leverage the limited amount of clean data along with weak signals from social engagements to train deep neural networks in a meta-learning framework to estimate the quality of different weak instances.
Experiments on realworld datasets demonstrate that the proposed framework outperforms state-of-the-art baselines for early detection of fake news without using any user engagements at prediction time.
arXiv Detail & Related papers (2020-04-03T18:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.