ProtGNN: Towards Self-Explaining Graph Neural Networks
- URL: http://arxiv.org/abs/2112.00911v1
- Date: Thu, 2 Dec 2021 01:16:29 GMT
- Title: ProtGNN: Towards Self-Explaining Graph Neural Networks
- Authors: Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, Cheekong Lee
- Abstract summary: We propose Prototype Graph Neural Network (ProtGNN), which combines prototype learning with GNNs.
ProtGNN and ProtGNN+ can provide inherent interpretability while achieving accuracy on par with the non-interpretable counterparts.
- Score: 12.789013658551454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the recent progress in Graph Neural Networks (GNNs), it remains
challenging to explain the predictions made by GNNs. Existing explanation
methods mainly focus on post-hoc explanations where another explanatory model
is employed to provide explanations for a trained GNN. The fact that post-hoc
methods fail to reveal the original reasoning process of GNNs raises the need
of building GNNs with built-in interpretability. In this work, we propose
Prototype Graph Neural Network (ProtGNN), which combines prototype learning
with GNNs and provides a new perspective on the explanations of GNNs. In
ProtGNN, the explanations are naturally derived from the case-based reasoning
process and are actually used during classification. The prediction of ProtGNN
is obtained by comparing the inputs to a few learned prototypes in the latent
space. Furthermore, for better interpretability and higher efficiency, a novel
conditional subgraph sampling module is incorporated to indicate which part of
the input graph is most similar to each prototype in ProtGNN+. Finally, we
evaluate our method on a wide range of datasets and perform concrete case
studies. Extensive results show that ProtGNN and ProtGNN+ can provide inherent
interpretability while achieving accuracy on par with the non-interpretable
counterparts.
Related papers
- Incorporating Retrieval-based Causal Learning with Information
Bottlenecks for Interpretable Graph Neural Networks [12.892400744247565]
We develop a novel interpretable causal GNN framework that incorporates retrieval-based causal learning with Graph Information Bottleneck (GIB) theory.
We achieve 32.71% higher precision on real-world explanation scenarios with diverse explanation types.
arXiv Detail & Related papers (2024-02-07T09:57:39Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Graph Neural Networks are Inherently Good Generalizers: Insights by
Bridging GNNs and MLPs [71.93227401463199]
This paper pinpoints the major source of GNNs' performance gain to their intrinsic capability, by introducing an intermediate model class dubbed as P(ropagational)MLP.
We observe that PMLPs consistently perform on par with (or even exceed) their GNN counterparts, while being much more efficient in training.
arXiv Detail & Related papers (2022-12-18T08:17:32Z) - Towards Prototype-Based Self-Explainable Graph Neural Network [37.90997236795843]
We study a novel problem of learning prototype-based self-explainable GNNs that can simultaneously give accurate predictions and prototype-based explanations on predictions.
The learned prototypes are also used to simultaneously make prediction for for a test instance and provide instance-level explanation.
arXiv Detail & Related papers (2022-10-05T00:47:42Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
Subgraphs-enhanced Graph Neural Networks (SGNNs) have been introduced to enhance the expressive power of GNNs.
In this work, we adapt PGExplainer, one of the most recent explainers for GNNs, to SGNNs.
We show that our framework is successful in explaining the decision process of an SGNN on graph classification tasks.
arXiv Detail & Related papers (2022-09-16T13:39:10Z) - GNNInterpreter: A Probabilistic Generative Model-Level Explanation for
Graph Neural Networks [25.94529851210956]
We propose a model-agnostic model-level explanation method for different Graph Neural Networks (GNNs) that follow the message passing scheme, GNNInterpreter.
GNNInterpreter learns a probabilistic generative graph distribution that produces the most discriminative graph pattern the GNN tries to detect.
Compared to existing works, GNNInterpreter is more flexible and computationally efficient in generating explanation graphs with different types of node and edge features.
arXiv Detail & Related papers (2022-09-15T07:45:35Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
We propose PGExplainer, a parameterized explainer for Graph Neural Networks (GNNs)
Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting easily.
Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification.
arXiv Detail & Related papers (2020-11-09T17:15:03Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
Graph neural networks (GNNs) have become a popular approach to integrating structural inductive biases into NLP models.
We introduce a post-hoc method for interpreting the predictions of GNNs which identifies unnecessary edges.
We show that we can drop a large proportion of edges without deteriorating the performance of the model.
arXiv Detail & Related papers (2020-10-01T17:51:19Z) - XGNN: Towards Model-Level Explanations of Graph Neural Networks [113.51160387804484]
Graphs neural networks (GNNs) learn node features by aggregating and combining neighbor information.
GNNs are mostly treated as black-boxes and lack human intelligible explanations.
We propose a novel approach, known as XGNN, to interpret GNNs at the model-level.
arXiv Detail & Related papers (2020-06-03T23:52:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.