An optical tweezer array of ground-state polar molecules
- URL: http://arxiv.org/abs/2112.00991v1
- Date: Thu, 2 Dec 2021 05:32:41 GMT
- Title: An optical tweezer array of ground-state polar molecules
- Authors: Jessie T. Zhang, Lewis R. B. Picard, William B. Cairncross, Kenneth
Wang, Yichao Yu, Fang Fang, Kang-Kuen Ni
- Abstract summary: Internal and motional state controlled and individually manipulable polar molecules are desirable for many quantum science applications.
We extend the technique to an array of five molecules, unlocking the ability to study molecular interactions.
- Score: 2.3550230036322337
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fully internal and motional state controlled and individually manipulable
polar molecules are desirable for many quantum science applications leveraging
the rich state space and intrinsic interactions of molecules. While prior
efforts at assembling molecules from their constituent atoms individually
trapped in optical tweezers achieved such a goal for exactly one molecule, here
we extend the technique to an array of five molecules, unlocking the ability to
study molecular interactions. We detail the technical challenges and solutions
inherent in scaling this system up. With parallel preparation and control of
multiple molecules in hand, this platform now serves as a starting point to
harness the vast resources and long-range dipolar interactions of molecules.
Related papers
- UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - Enhanced quantum control of individual ultracold molecules using optical
tweezer arrays [44.99833362998488]
Control over the quantum states of individual molecules is crucial in the quest to harness their rich internal structure and dipolar interactions.
We develop a toolbox of techniques for the control and readout of individually trapped polar molecules in an array of optical tweezers.
arXiv Detail & Related papers (2024-01-24T17:00:39Z) - Quantum state tracking and control of a single molecular ion in a thermal environment [4.600707934773013]
We report real-time observations of thermal radiation-driven transitions between individual states of a single molecule.
We reversed these "jumps" through microwave-driven transitions, resulting in a twentyfold improvement in the time the molecule dwells in a chosen state.
arXiv Detail & Related papers (2023-12-28T16:29:31Z) - Efficient Reduction of Casimir Forces by Self-assembled Bio-molecular
Thin Films [62.997667081978825]
Casimir forces, related to London-van der Waals forces, arise if the spectrum of electromagnetic fluctuations is restricted by boundaries.
We experimentally investigate the influence of self-assembled molecular bio and organic thin films on the Casimir force between a plate and a sphere.
We find that molecular thin films, despite being a mere few nanometers thick, reduce the Casimir force by up to 14%.
arXiv Detail & Related papers (2023-06-28T13:44:07Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - Dipolar spin-exchange and entanglement between molecules in an optical
tweezer array [0.0]
Ultracold polar molecules are promising candidate qubits for quantum computing.
Using a molecular optical tweezer array, single molecules can be moved and separately addressed for qubit operations.
We demonstrate a two-qubit gate to generate entanglement deterministically, an essential resource for all quantum information applications.
arXiv Detail & Related papers (2022-11-17T18:53:42Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - Theoretical Challenges in Polaritonic Chemistry [0.0]
Polaritonic chemistry exploits strong light-matter coupling between molecules and confined electromagnetic field modes.
In wavelength-scale optical cavities light-matter interaction is ruled by collective effects.
Plasmonic subwavelength nanocavities allow even single molecules to reach strong coupling.
arXiv Detail & Related papers (2021-11-16T11:50:19Z) - High-resolution 'magic'-field spectroscopy on trapped polyatomic
molecules [62.997667081978825]
Rapid progress in cooling and trapping of molecules has enabled first experiments on high resolution spectroscopy of trapped diatomic molecules.
Extending this work to polyatomic molecules provides unique opportunities due to more complex geometries and additional internal degrees of freedom.
arXiv Detail & Related papers (2021-10-21T15:46:17Z) - Quantum Molecular Unfolding [0.5677685109155078]
We focus on one specific phase of the molecular docking procedure i.e. Molecular Unfolding (MU)
The objective of the MU problem is to find the configuration that maximizes the molecular area, or equivalently, that maximizes the internal distances between atoms inside the molecule.
We propose a quantum annealing approach to MU by formulating it as a High-order Unconstrained Binary Optimization (HUBO)
Results and performances obtained with quantum annealers are compared with state of art classical solvers.
arXiv Detail & Related papers (2021-07-28T19:28:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.