UniIF: Unified Molecule Inverse Folding
- URL: http://arxiv.org/abs/2405.18968v1
- Date: Wed, 29 May 2024 10:26:16 GMT
- Title: UniIF: Unified Molecule Inverse Folding
- Authors: Zhangyang Gao, Jue Wang, Cheng Tan, Lirong Wu, Yufei Huang, Siyuan Li, Zhirui Ye, Stan Z. Li,
- Abstract summary: We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
- Score: 67.60267592514381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Molecule inverse folding has been a long-standing challenge in chemistry and biology, with the potential to revolutionize drug discovery and material science. Despite specified models have been proposed for different small- or macro-molecules, few have attempted to unify the learning process, resulting in redundant efforts. Complementary to recent advancements in molecular structure prediction, such as RoseTTAFold All-Atom and AlphaFold3, we propose the unified model UniIF for the inverse folding of all molecules. We do such unification in two levels: 1) Data-Level: We propose a unified block graph data form for all molecules, including the local frame building and geometric feature initialization. 2) Model-Level: We introduce a geometric block attention network, comprising a geometric interaction, interactive attention and virtual long-term dependency modules, to capture the 3D interactions of all molecules. Through comprehensive evaluations across various tasks such as protein design, RNA design, and material design, we demonstrate that our proposed method surpasses state-of-the-art methods on all tasks. UniIF offers a versatile and effective solution for general molecule inverse folding.
Related papers
- Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [44.934084652800976]
We introduce the first MoleculAR Conformer Ensemble Learning benchmark to thoroughly evaluate the potential of learning on conformer ensembles.
Our findings reveal that direct learning from an conformer space can improve performance on a variety of tasks and models.
arXiv Detail & Related papers (2023-09-29T20:06:46Z) - Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning [20.60450267217201]
We propose to represent an arbitrary 3D complex as a geometric graph of sets, shedding light on encoding all types of molecules with one model.
We then propose a Generalist Equivariant Transformer (GET) to effectively capture both domain-specific hierarchies and domain-agnostic interaction physics.
arXiv Detail & Related papers (2023-06-02T11:56:44Z) - Functional-Group-Based Diffusion for Pocket-Specific Molecule Generation and Elaboration [63.23362798102195]
We propose D3FG, a functional-group-based diffusion model for pocket-specific molecule generation and elaboration.
D3FG decomposes molecules into two categories of components: functional groups defined as rigid bodies and linkers as mass points.
In the experiments, our method can generate molecules with more realistic 3D structures, competitive affinities toward the protein targets, and better drug properties.
arXiv Detail & Related papers (2023-05-30T06:41:20Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - DiffBP: Generative Diffusion of 3D Molecules for Target Protein Binding [51.970607704953096]
Previous works usually generate atoms in an auto-regressive way, where element types and 3D coordinates of atoms are generated one by one.
In real-world molecular systems, the interactions among atoms in an entire molecule are global, leading to the energy function pair-coupled among atoms.
In this work, a generative diffusion model for molecular 3D structures based on target proteins is established, at a full-atom level in a non-autoregressive way.
arXiv Detail & Related papers (2022-11-21T07:02:15Z) - Scalable Fragment-Based 3D Molecular Design with Reinforcement Learning [68.8204255655161]
We introduce a novel framework for scalable 3D design that uses a hierarchical agent to build molecules.
In a variety of experiments, we show that our agent, guided only by energy considerations, can efficiently learn to produce molecules with over 100 atoms.
arXiv Detail & Related papers (2022-02-01T18:54:24Z) - ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction [25.49976851499949]
We propose a novel Geometry Enhanced Molecular representation learning method (GEM) for Chemical Representation Learning (ChemRL)
At first, we design a geometry-based GNN architecture that simultaneously models atoms, bonds, and bond angles in a molecule.
On top of the devised GNN architecture, we propose several novel geometry-level self-supervised learning strategies to learn spatial knowledge.
arXiv Detail & Related papers (2021-06-11T02:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.