論文の概要: GANSeg: Learning to Segment by Unsupervised Hierarchical Image
Generation
- arxiv url: http://arxiv.org/abs/2112.01036v1
- Date: Thu, 2 Dec 2021 07:57:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 15:31:55.613321
- Title: GANSeg: Learning to Segment by Unsupervised Hierarchical Image
Generation
- Title(参考訳): GANSeg:教師なし階層画像生成によるセグメント学習
- Authors: Xingzhe He, Bastian Wandt, Helge Rhodin
- Abstract要約: 本稿では,潜伏マスクに条件付き画像を生成するGANベースのアプローチを提案する。
このようなマスク条件の画像生成は、マスクを階層的に条件付ける際に忠実に学習できることを示す。
また、セグメンテーションネットワークをトレーニングするためのイメージマスクペアの生成も可能で、既存のベンチマークでは、最先端の教師なしセグメンテーションメソッドよりも優れています。
- 参考スコア(独自算出の注目度): 16.900404701997502
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Segmenting an image into its parts is a frequent preprocess for high-level
vision tasks such as image editing. However, annotating masks for supervised
training is expensive. Weakly-supervised and unsupervised methods exist, but
they depend on the comparison of pairs of images, such as from multi-views,
frames of videos, and image transformations of single images, which limits
their applicability. To address this, we propose a GAN-based approach that
generates images conditioned on latent masks, thereby alleviating full or weak
annotations required in previous approaches. We show that such mask-conditioned
image generation can be learned faithfully when conditioning the masks in a
hierarchical manner on latent keypoints that define the position of parts
explicitly. Without requiring supervision of masks or points, this strategy
increases robustness to viewpoint and object positions changes. It also lets us
generate image-mask pairs for training a segmentation network, which
outperforms the state-of-the-art unsupervised segmentation methods on
established benchmarks.
- Abstract(参考訳): 画像をその部分に分割することは、画像編集などのハイレベルなビジョンタスクの事前処理を頻繁に行う。
しかし、指導訓練用のマスクは高価である。
弱い教師と教師なしの手法は存在するが、それらはマルチビュー、ビデオのフレーム、単一の画像の画像変換などの対の比較に依存するため、適用性が制限される。
そこで本稿では,遅延マスクに条件付き画像を生成するGANベースのアプローチを提案する。
このようなマスク条件の画像生成は、部品の位置を明確に定義した潜在キーポイントに階層的にマスクを条件付ける際に、忠実に学習できることを示す。
マスクやポイントの監督を必要とせずに、この戦略は視点や物体の位置の変化に対する堅牢性を高める。
また、セグメンテーションネットワークをトレーニングするためのイメージマスクペアを生成することもでき、確立されたベンチマークで最先端の教師なしセグメンテーションメソッドよりも優れています。
関連論文リスト
- Open-Vocabulary Segmentation with Unpaired Mask-Text Supervision [87.15580604023555]
Unpair-Segは、弱制御されたオープン語彙セグメンテーションフレームワークである。
未ペア画像マスクと画像テキストペアから学習し、独立して効率的に収集することができる。
ADE-847とPASCAL Context-459データセットで14.6%と19.5%のmIoUを達成した。
論文 参考訳(メタデータ) (2024-02-14T06:01:44Z) - Contrastive Grouping with Transformer for Referring Image Segmentation [23.276636282894582]
本稿では,Transformer Network (CGFormer) を用いたコントラストグルーピングというマスク分類フレームワークを提案する。
CGFormerはトークンベースのクエリとグルーピング戦略を通じて、オブジェクトレベルの情報を明示的にキャプチャする。
実験の結果,CGFormerはセグメンテーションと一般化の両設定において,最先端の手法よりも一貫して,大幅に優れていた。
論文 参考訳(メタデータ) (2023-09-02T20:53:42Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - MaskSketch: Unpaired Structure-guided Masked Image Generation [56.88038469743742]
MaskSketchは、サンプリング中の余分な条件信号としてガイドスケッチを使用して生成結果の空間的条件付けを可能にする画像生成方法である。
マスク付き生成変換器の中間自己アテンションマップが入力画像の重要な構造情報を符号化していることを示す。
以上の結果から,MaskSketchは誘導構造に対する高画像リアリズムと忠実性を実現する。
論文 参考訳(メタデータ) (2023-02-10T20:27:02Z) - Differentiable Soft-Masked Attention [115.5770357189209]
Weakly Supervised Video Objectのタスクには,「識別可能なソフトマッシュアップ注意」が使用されている。
我々は、トランスフォーマーベースのトレーニングネットワークを開発したが、1つのアノテートフレームだけで、ビデオ上でのサイクル一貫性トレーニングの恩恵を受けることができる。
論文 参考訳(メタデータ) (2022-06-01T02:05:13Z) - What You See is What You Classify: Black Box Attributions [61.998683569022006]
我々は、トレーニング済みのブラックボックス分類器であるExpplanandumの属性を予測するために、ディープネットワークであるExplainerを訓練する。
既存のほとんどのアプローチとは異なり、我々の手法はクラス固有のマスクを直接生成することができる。
我々の属性は、視覚的および定量的に確立された方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-05-23T12:30:04Z) - Open-Vocabulary Instance Segmentation via Robust Cross-Modal
Pseudo-Labeling [61.03262873980619]
Open-vocabularyのインスタンスセグメンテーションは、マスクアノテーションなしで新しいクラスをセグメンテーションすることを目的としている。
本研究では,字幕内の単語の意味を画像中のオブジェクトマスクの視覚的特徴と整合させることで,擬似マスクの訓練を行うクロスモーダルな擬似ラベルフレームワークを提案する。
我々のフレームワークは、生徒の自己学習のための単語意味論を通じて、キャプションに新しいクラスをラベル付けすることができる。
論文 参考訳(メタデータ) (2021-11-24T18:50:47Z) - Few-shot Semantic Image Synthesis Using StyleGAN Prior [8.528384027684192]
本稿では,STYPEGANを用いたセマンティックマスクの擬似ラベリングを行うトレーニング戦略を提案する。
私たちの重要なアイデアは、semantic masksの例から、スタイルガン機能と各セマンティッククラスの単純なマッピングを構築することです。
擬似セマンティックマスクは、ピクセル整列マスクを必要とする従来のアプローチでは粗いかもしれないが、我々のフレームワークは、濃密なセマンティックマスクだけでなく、ランドマークやスクリブルのようなスパース入力から高品質な画像を合成することができる。
論文 参考訳(メタデータ) (2021-03-27T11:04:22Z) - Automatic Image Labelling at Pixel Level [21.59653873040243]
画素レベルの画像ラベリングを自動的に生成する興味深い学習手法を提案する。
The Guided Filter Network (GFN) was first developed to learn the segmentation knowledge from a source domain。
GFNはそのようなセグメンテーションの知識を変換し、ターゲットドメインで粗いオブジェクトマスクを生成する。
論文 参考訳(メタデータ) (2020-07-15T00:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。