論文の概要: Computing Class Hierarchies from Classifiers
- arxiv url: http://arxiv.org/abs/2112.01187v1
- Date: Thu, 2 Dec 2021 13:01:04 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 23:25:27.314236
- Title: Computing Class Hierarchies from Classifiers
- Title(参考訳): 分類器からのクラス階層の計算
- Authors: Kai Kang and Fangzhen Lin
- Abstract要約: ニューラルネットワークからクラス階層を自動的に取得する新しいアルゴリズムを提案する。
我々のアルゴリズムは、よく知られたディープニューラルネットワークモデルに驚くほど優れた階層を生成する。
- 参考スコア(独自算出の注目度): 12.631679928202516
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A class or taxonomic hierarchy is often manually constructed, and part of our
knowledge about the world. In this paper, we propose a novel algorithm for
automatically acquiring a class hierarchy from a classifier which is often a
large neural network these days. The information that we need from a classifier
is its confusion matrix which contains, for each pair of base classes, the
number of errors the classifier makes by mistaking one for another. Our
algorithm produces surprisingly good hierarchies for some well-known deep
neural network models trained on the CIFAR-10 dataset, a neural network model
for predicting the native language of a non-native English speaker, a neural
network model for detecting the language of a written text, and a classifier
for identifying music genre. In the literature, such class hierarchies have
been used to provide interpretability to the neural networks. We also discuss
some other potential uses of the acquired hierarchies.
- Abstract(参考訳): 階級や分類階層は、しばしば手作業で構築され、世界に関する知識の一部となる。
本稿では,近年,大規模なニューラルネットワークである分類器からクラス階層を自動的に取得する新しいアルゴリズムを提案する。
分類器から必要な情報は、その混乱行列であり、それぞれの基底クラスに対して、分類器が別の分類器を間違えて犯すエラーの数を含む。
このアルゴリズムは、cifar-10データセットでトレーニングされた有名なディープニューラルネットワークモデル、非ネイティブ英語話者のネイティブ言語を予測するニューラルネットワークモデル、書かれたテキストの言語を検出するニューラルネットワークモデル、音楽ジャンルを識別するための分類器に対して驚くほど優れた階層を生成する。
文献では、そのような階層はニューラルネットワークの解釈可能性を提供するために使われてきた。
また、取得した階層の他の用途についても論じる。
関連論文リスト
- How Deep Neural Networks Learn Compositional Data: The Random Hierarchy Model [47.617093812158366]
言語と画像の階層構造にインスパイアされた合成タスクのファミリーであるランダム階層モデルを紹介する。
深層ネットワークは、等価なグループを交換するために不変な内部表現を開発することでタスクを学習する。
この結果から, ネットワークは次元の呪いを克服し, 不変表現を構築できることが示唆された。
論文 参考訳(メタデータ) (2023-07-05T09:11:09Z) - Neuro-symbolic Rule Learning in Real-world Classification Tasks [75.0907310059298]
pix2ruleのニューラルDNFモジュールを拡張し、実世界のマルチクラスおよびマルチラベル分類タスクにおけるルール学習をサポートする。
多クラス分類において相互排他性を強制するニューラルDNF-EO(Exactly One)と呼ばれる新しい拡張モデルを提案する。
論文 参考訳(メタデータ) (2023-03-29T13:27:14Z) - A Multi-Grained Self-Interpretable Symbolic-Neural Model For
Single/Multi-Labeled Text Classification [29.075766631810595]
本稿では,テキストのクラスラベルを選挙区木から明示的に予測するシンボリック・ニューラルモデルを提案する。
構造化言語モデルが自己教師型で選挙区木を予測することを学ぶと、訓練データとして、原文と文レベルのラベルしか必要としない。
実験により,下流タスクにおける予測精度が向上できることが実証された。
論文 参考訳(メタデータ) (2023-03-06T03:25:43Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
本研究では、ニューラルネットワークを学習して分類器をランダムにETFとして分類し、訓練中に固定する可能性について検討する。
実験結果から,バランスの取れたデータセットの画像分類において,同様の性能が得られることがわかった。
論文 参考訳(メタデータ) (2022-03-17T04:34:28Z) - Khmer Text Classification Using Word Embedding and Neural Networks [0.0]
Khmerテキストの様々な分類手法について論じる。
Khmerワード埋め込みモデルは、ワードベクトル表現を構築するために、30万のKhmerワードコーパスで訓練される。
複数クラス・複数ラベルのテキスト分類タスクに対して,ニュース記事データセット上での異なるアプローチの性能を評価する。
論文 参考訳(メタデータ) (2021-12-13T15:57:32Z) - Incremental Deep Neural Network Learning using Classification Confidence
Thresholding [4.061135251278187]
分類のための現代のニューラルネットワークのほとんどは、未知の概念を考慮していない。
本稿では,逐次学習のための素数ニューラルネットワークに対する分類信頼度閾値アプローチを提案する。
論文 参考訳(メタデータ) (2021-06-21T22:46:28Z) - Train your classifier first: Cascade Neural Networks Training from upper
layers to lower layers [54.47911829539919]
我々は,高品質な分類器を探索するアルゴリズムとして見ることのできる,新しいトップダウン学習手法を開発した。
本研究では,自動音声認識(ASR)タスクと言語モデリングタスクについて検討した。
提案手法は,Wall Street Journal 上でのリカレントニューラルネットワーク ASR モデル,Switchboard 上での自己注意型 ASR モデル,WikiText-2 上での AWD-LSTM 言語モデルなど,一貫して改善されている。
論文 参考訳(メタデータ) (2021-02-09T08:19:49Z) - Provably Training Neural Network Classifiers under Fairness Constraints [70.64045590577318]
過パラメータのニューラルネットワークが制約を満たしていることを示す。
公平なニューラルネットワーク分類器を構築する上で重要な要素は、ニューラルネットワークの非応答解析を確立することである。
論文 参考訳(メタデータ) (2020-12-30T18:46:50Z) - A Deep Neural Network for Audio Classification with a Classifier
Attention Mechanism [2.3204178451683264]
我々は、Audio-based Convolutional Neural Network (CAB-CNN)と呼ばれる新しいアテンションベースニューラルネットワークアーキテクチャを導入する。
このアルゴリズムは、単純な分類器のリストと、セレクタとしてアテンションメカニズムからなる、新しく設計されたアーキテクチャを使用する。
我々のアルゴリズムは最先端のアルゴリズムと比較して、選択したテストスコアに対して10%以上の改善を達成している。
論文 参考訳(メタデータ) (2020-06-14T21:29:44Z) - Aggregated Learning: A Vector-Quantization Approach to Learning Neural
Network Classifiers [48.11796810425477]
IB学習は、実際、量子化問題の特別なクラスと等価であることを示す。
ニューラルネットワークモデルを用いた分類のための新しい学習フレームワーク"集約学習"を提案する。
本フレームワークの有効性は,標準画像認識およびテキスト分類タスクに関する広範な実験を通じて検証される。
論文 参考訳(メタデータ) (2020-01-12T16:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。