Putting 3D Spatially Sparse Networks on a Diet
- URL: http://arxiv.org/abs/2112.01316v1
- Date: Thu, 2 Dec 2021 15:20:15 GMT
- Title: Putting 3D Spatially Sparse Networks on a Diet
- Authors: Junha Lee, Christopher Choy, Jaesik Park
- Abstract summary: We propose a compact weight-sparse and spatially sparse 3D convnet (WS3-ConvNet) for semantic segmentation and instance segmentation.
We employ various network pruning strategies to find compact networks and show our WS3-ConvNet achieves minimal loss in performance (2-15% drop) with orders-of-15% smaller number of parameters (1/100 compression rate)
Finally, we systematically analyze the compression patterns of WS3-ConvNet and show interesting emerging sparsity patterns common in our compressed networks to further speed up inference.
- Score: 21.881294733075393
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: 3D neural networks have become prevalent for many 3D vision tasks including
object detection, segmentation, registration, and various perception tasks for
3D inputs. However, due to the sparsity and irregularity of 3D data, custom 3D
operators or network designs have been the primary focus of 3D research, while
the size of networks or efficacy of parameters has been overlooked. In this
work, we perform the first comprehensive study on the weight sparsity of
spatially sparse 3D convolutional networks and propose a compact weight-sparse
and spatially sparse 3D convnet (WS^3-ConvNet) for semantic segmentation and
instance segmentation. We employ various network pruning strategies to find
compact networks and show our WS^3-ConvNet achieves minimal loss in performance
(2.15% drop) with orders-of-magnitude smaller number of parameters (1/100
compression rate). Finally, we systematically analyze the compression patterns
of WS^3-ConvNet and show interesting emerging sparsity patterns common in our
compressed networks to further speed up inference.
Related papers
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTection is a state-of-the-art method for 3D object detection from single images.
We fine-tune a diffusion model to perform novel view synthesis conditioned on a single image.
We further train the model on target data with detection supervision.
arXiv Detail & Related papers (2023-11-07T23:46:41Z) - SeMLaPS: Real-time Semantic Mapping with Latent Prior Networks and
Quasi-Planar Segmentation [53.83313235792596]
We present a new methodology for real-time semantic mapping from RGB-D sequences.
It combines a 2D neural network and a 3D network based on a SLAM system with 3D occupancy mapping.
Our system achieves state-of-the-art semantic mapping quality within 2D-3D networks-based systems.
arXiv Detail & Related papers (2023-06-28T22:36:44Z) - Swin3D: A Pretrained Transformer Backbone for 3D Indoor Scene
Understanding [40.68012530554327]
We introduce a pretrained 3D backbone, called SST, for 3D indoor scene understanding.
We design a 3D Swin transformer as our backbone network, which enables efficient self-attention on sparse voxels with linear memory complexity.
A series of extensive ablation studies further validate the scalability, generality, and superior performance enabled by our approach.
arXiv Detail & Related papers (2023-04-14T02:49:08Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
State-of-the-art methods for driving-scene LiDAR-based perception often project the point clouds to 2D space and then process them via 2D convolution.
A natural remedy is to utilize the 3D voxelization and 3D convolution network.
We propose a new framework for the outdoor LiDAR segmentation, where cylindrical partition and asymmetrical 3D convolution networks are designed to explore the 3D geometric pattern.
arXiv Detail & Related papers (2021-09-12T06:25:11Z) - Fast and Furious: Real Time End-to-End 3D Detection, Tracking and Motion
Forecasting with a Single Convolutional Net [93.51773847125014]
We propose a novel deep neural network that is able to jointly reason about 3D detection, tracking and motion forecasting given data captured by a 3D sensor.
Our approach performs 3D convolutions across space and time over a bird's eye view representation of the 3D world.
arXiv Detail & Related papers (2020-12-22T22:43:35Z) - S3CNet: A Sparse Semantic Scene Completion Network for LiDAR Point
Clouds [0.16799377888527683]
We present S3CNet, a sparse convolution based neural network that predicts the semantically completed scene from a single, unified LiDAR point cloud.
We show that our proposed method outperforms all counterparts on the 3D task, achieving state-of-the art results on the Semantic KITTI benchmark.
arXiv Detail & Related papers (2020-12-16T20:14:41Z) - ParaNet: Deep Regular Representation for 3D Point Clouds [62.81379889095186]
ParaNet is a novel end-to-end deep learning framework for representing 3D point clouds.
It converts an irregular 3D point cloud into a regular 2D color image, named point geometry image (PGI)
In contrast to conventional regular representation modalities based on multi-view projection and voxelization, the proposed representation is differentiable and reversible.
arXiv Detail & Related papers (2020-12-05T13:19:55Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
arXiv Detail & Related papers (2020-06-22T15:54:24Z) - HyperFlow: Representing 3D Objects as Surfaces [19.980044265074298]
We present a novel generative model that leverages hypernetworks to create continuous 3D object representations in a form of lightweight surfaces (meshes) directly out of point clouds.
We obtain continuous mesh-based object representations that yield better qualitative results than competing approaches.
arXiv Detail & Related papers (2020-06-15T19:18:02Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
A pointwise attention-based atrous convolutional neural network architecture is proposed to efficiently deal with a large number of points.
The proposed model has been evaluated on the two most important 3D point cloud datasets for the 3D semantic segmentation task.
It achieves a reasonable performance compared to state-of-the-art models in terms of accuracy, with a much smaller number of parameters.
arXiv Detail & Related papers (2019-12-27T13:12:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.