Level set learning with pseudo-reversible neural networks for nonlinear
dimension reduction in function approximation
- URL: http://arxiv.org/abs/2112.01438v1
- Date: Thu, 2 Dec 2021 17:25:34 GMT
- Title: Level set learning with pseudo-reversible neural networks for nonlinear
dimension reduction in function approximation
- Authors: Yuankai Teng, Zhu Wang, Lili Ju, Anthony Gruber, Guannan Zhang
- Abstract summary: We propose a new method of Dimension Reduction via Learning Level Sets (DRiLLS) for function approximation.
Our method contains two major components: one is the pseudo-reversible neural network (PRNN) module that effectively transforms high-dimensional input variables to low-dimensional active variables.
The PRNN not only relaxes the invertibility constraint of the nonlinear transformation present in the NLL method due to the use of RevNet, but also adaptively weights the influence of each sample and controls the sensitivity the function to the learned active variables.
- Score: 8.28646586439284
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the curse of dimensionality and the limitation on training data,
approximating high-dimensional functions is a very challenging task even for
powerful deep neural networks. Inspired by the Nonlinear Level set Learning
(NLL) method that uses the reversible residual network (RevNet), in this paper
we propose a new method of Dimension Reduction via Learning Level Sets (DRiLLS)
for function approximation. Our method contains two major components: one is
the pseudo-reversible neural network (PRNN) module that effectively transforms
high-dimensional input variables to low-dimensional active variables, and the
other is the synthesized regression module for approximating function values
based on the transformed data in the low-dimensional space. The PRNN not only
relaxes the invertibility constraint of the nonlinear transformation present in
the NLL method due to the use of RevNet, but also adaptively weights the
influence of each sample and controls the sensitivity of the function to the
learned active variables. The synthesized regression uses Euclidean distance in
the input space to select neighboring samples, whose projections on the space
of active variables are used to perform local least-squares polynomial fitting.
This helps to resolve numerical oscillation issues present in traditional local
and global regressions. Extensive experimental results demonstrate that our
DRiLLS method outperforms both the NLL and Active Subspace methods, especially
when the target function possesses critical points in the interior of its input
domain.
Related papers
- A Mean-Field Analysis of Neural Stochastic Gradient Descent-Ascent for Functional Minimax Optimization [90.87444114491116]
This paper studies minimax optimization problems defined over infinite-dimensional function classes of overparametricized two-layer neural networks.
We address (i) the convergence of the gradient descent-ascent algorithm and (ii) the representation learning of the neural networks.
Results show that the feature representation induced by the neural networks is allowed to deviate from the initial one by the magnitude of $O(alpha-1)$, measured in terms of the Wasserstein distance.
arXiv Detail & Related papers (2024-04-18T16:46:08Z) - Nonlinear functional regression by functional deep neural network with
kernel embedding [20.306390874610635]
We propose a functional deep neural network with an efficient and fully data-dependent dimension reduction method.
The architecture of our functional net consists of a kernel embedding step, a projection step, and a deep ReLU neural network for the prediction.
The utilization of smooth kernel embedding enables our functional net to be discretization invariant, efficient, and robust to noisy observations.
arXiv Detail & Related papers (2024-01-05T16:43:39Z) - Using Linear Regression for Iteratively Training Neural Networks [4.873362301533824]
We present a simple linear regression based approach for learning the weights and biases of a neural network.
The approach is intended to be to larger, more complex architectures.
arXiv Detail & Related papers (2023-07-11T11:53:25Z) - Sparse-Input Neural Network using Group Concave Regularization [10.103025766129006]
Simultaneous feature selection and non-linear function estimation are challenging in neural networks.
We propose a framework of sparse-input neural networks using group concave regularization for feature selection in both low-dimensional and high-dimensional settings.
arXiv Detail & Related papers (2023-07-01T13:47:09Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Exploring Linear Feature Disentanglement For Neural Networks [63.20827189693117]
Non-linear activation functions, e.g., Sigmoid, ReLU, and Tanh, have achieved great success in neural networks (NNs)
Due to the complex non-linear characteristic of samples, the objective of those activation functions is to project samples from their original feature space to a linear separable feature space.
This phenomenon ignites our interest in exploring whether all features need to be transformed by all non-linear functions in current typical NNs.
arXiv Detail & Related papers (2022-03-22T13:09:17Z) - Nonlinear Level Set Learning for Function Approximation on Sparse Data
with Applications to Parametric Differential Equations [6.184270985214254]
"Nonlinear Level set Learning" (NLL) approach is presented for the pointwise prediction of functions which have been sparsely sampled.
The proposed algorithm effectively reduces the input dimension to the theoretical lower bound with minor accuracy loss.
Experiments and applications are presented which compare this modified NLL with the original NLL and the Active Subspaces (AS) method.
arXiv Detail & Related papers (2021-04-29T01:54:05Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.