Making Sense of Touch: Unsupervised Shapelet Learning in Bag-of-words Sense
- URL: http://arxiv.org/abs/2502.04167v1
- Date: Thu, 06 Feb 2025 15:50:40 GMT
- Title: Making Sense of Touch: Unsupervised Shapelet Learning in Bag-of-words Sense
- Authors: Zhicong Xian, Tabish Chaudhary, Jürgen Bock,
- Abstract summary: This paper introduces NN-STNE, a neuralization network using t-distributed neighbor manipulation (t-SNE) data to reduce input dimensions by mapping as to shapelet data.
- Score: 0.0
- License:
- Abstract: This paper introduces NN-STNE, a neural network using t-distributed stochastic neighbor embedding (t-SNE) as a hidden layer to reduce input dimensions by mapping long time-series data into shapelet membership probabilities. A Gaussian kernel-based mean square error preserves local data structure, while K-means initializes shapelet candidates due to the non-convex optimization challenge. Unlike existing methods, our approach uses t-SNE to address crowding in low-dimensional space and applies L1-norm regularization to optimize shapelet length. Evaluations on the UCR dataset and an electrical component manipulation task, like switching on, demonstrate improved clustering accuracy over state-of-the-art feature-learning methods in robotics.
Related papers
- Minimally Supervised Learning using Topological Projections in
Self-Organizing Maps [55.31182147885694]
We introduce a semi-supervised learning approach based on topological projections in self-organizing maps (SOMs)
Our proposed method first trains SOMs on unlabeled data and then a minimal number of available labeled data points are assigned to key best matching units (BMU)
Our results indicate that the proposed minimally supervised model significantly outperforms traditional regression techniques.
arXiv Detail & Related papers (2024-01-12T22:51:48Z) - Learning k-Level Structured Sparse Neural Networks Using Group Envelope Regularization [4.0554893636822]
We introduce a novel approach to deploy large-scale Deep Neural Networks on constrained resources.
The method speeds up inference time and aims to reduce memory demand and power consumption.
arXiv Detail & Related papers (2022-12-25T15:40:05Z) - Level set learning with pseudo-reversible neural networks for nonlinear
dimension reduction in function approximation [8.28646586439284]
We propose a new method of Dimension Reduction via Learning Level Sets (DRiLLS) for function approximation.
Our method contains two major components: one is the pseudo-reversible neural network (PRNN) module that effectively transforms high-dimensional input variables to low-dimensional active variables.
The PRNN not only relaxes the invertibility constraint of the nonlinear transformation present in the NLL method due to the use of RevNet, but also adaptively weights the influence of each sample and controls the sensitivity the function to the learned active variables.
arXiv Detail & Related papers (2021-12-02T17:25:34Z) - Scaling Neural Tangent Kernels via Sketching and Random Features [53.57615759435126]
Recent works report that NTK regression can outperform finitely-wide neural networks trained on small-scale datasets.
We design a near input-sparsity time approximation algorithm for NTK, by sketching the expansions of arc-cosine kernels.
We show that a linear regressor trained on our CNTK features matches the accuracy of exact CNTK on CIFAR-10 dataset while achieving 150x speedup.
arXiv Detail & Related papers (2021-06-15T04:44:52Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
We propose an efficient feature map construction of the Neural Tangent Kernel (NTK) of fully-connected ReLU network.
We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice.
arXiv Detail & Related papers (2021-04-03T09:08:12Z) - Learning with Neural Tangent Kernels in Near Input Sparsity Time [5.472561051778218]
The Neural Tangent Kernel (NTK) characterizes the behavior of infinitely wide neural nets trained under at least squares loss by gradient descent.
We propose a near input sparsity time algorithm that maps the input data to a randomized low-dimensional feature space so that the inner product of the transformed data approximates their NTK evaluation.
We show that in standard large-scale regression and classification tasks a linear regressor trained on our features outperforms trained NNs and Nystrom method with NTK kernels.
arXiv Detail & Related papers (2021-04-01T11:56:58Z) - Facilitate the Parametric Dimension Reduction by Gradient Clipping [1.9671123873378715]
We extend a well-known dimension reduction method, t-distributed neighbor embedding (t-SNE), from non-parametric to parametric by training neural networks.
Our method achieves an embedding quality that is compatible with the non-parametric t-SNE while enjoying the ability of generalization.
arXiv Detail & Related papers (2020-09-30T01:21:22Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
We propose a novel semantic data augmentation algorithm to complement traditional approaches.
The proposed method is inspired by the intriguing property that deep networks are effective in learning linearized features.
We show that the proposed implicit semantic data augmentation (ISDA) algorithm amounts to minimizing a novel robust CE loss.
arXiv Detail & Related papers (2020-07-21T00:32:44Z) - AdaS: Adaptive Scheduling of Stochastic Gradients [50.80697760166045]
We introduce the notions of textit"knowledge gain" and textit"mapping condition" and propose a new algorithm called Adaptive Scheduling (AdaS)
Experimentation reveals that, using the derived metrics, AdaS exhibits: (a) faster convergence and superior generalization over existing adaptive learning methods; and (b) lack of dependence on a validation set to determine when to stop training.
arXiv Detail & Related papers (2020-06-11T16:36:31Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.