論文の概要: Target Propagation via Regularized Inversion
- arxiv url: http://arxiv.org/abs/2112.01453v1
- Date: Thu, 2 Dec 2021 17:49:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-12-03 16:53:17.746077
- Title: Target Propagation via Regularized Inversion
- Title(参考訳): 正規化反転による目標伝播
- Authors: Vincent Roulet and Zaid Harchaoui
- Abstract要約: 本稿では,ネットワークレイヤの正規化インバージョンに基づくターゲット伝搬の簡易バージョンを提案する。
我々のTPは、様々なシーケンスモデリング問題において、長いシーケンスでリカレントニューラルネットワークのトレーニングにどのように使用できるかを示す。
- 参考スコア(独自算出の注目度): 4.289574109162585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Target Propagation (TP) algorithms compute targets instead of gradients along
neural networks and propagate them backward in a way that is similar yet
different than gradient back-propagation (BP). The idea was first presented as
a perturbative alternative to back-propagation that may achieve greater
accuracy in gradient evaluation when training multi-layer neural networks
(LeCun et al., 1989). However, TP has remained more of a template algorithm
with many variations than a well-identified algorithm. Revisiting insights of
LeCun et al., (1989) and more recently of Lee et al. (2015), we present a
simple version of target propagation based on regularized inversion of network
layers, easily implementable in a differentiable programming framework. We
compare its computational complexity to the one of BP and delineate the regimes
in which TP can be attractive compared to BP. We show how our TP can be used to
train recurrent neural networks with long sequences on various sequence
modeling problems. The experimental results underscore the importance of
regularization in TP in practice.
- Abstract(参考訳): Target Propagation (TP)アルゴリズムは、ニューラルネットワークに沿った勾配ではなくターゲットを計算し、勾配バックプロパゲーション(BP)と似ている方法で後方に伝播する。
このアイデアは、最初はバックプロパゲーションの摂動的な代替として提示され、多層ニューラルネットワークを訓練する際の勾配評価の精度を高めることができた(LeCun et al., 1989)。
しかし、TPはよく同定されたアルゴリズムよりも多くのバリエーションを持つテンプレートアルゴリズムのままである。
revisiting insights of lecun et al., (1989) and more recent of lee et al. (2015)では、ネットワーク層の正規化反転に基づくターゲット伝搬の単純なバージョンを紹介し、微分可能プログラミングフレームワークで容易に実装できる。
計算複雑性をBPのそれと比較し,TPがBPと比較して魅力的なレギュレーションを導出する。
我々のTPは、様々なシーケンスモデリング問題において、長いシーケンスでリカレントニューラルネットワークのトレーニングにどのように使用できるかを示す。
実験結果から,TPの正則化の重要性が示唆された。
関連論文リスト
- Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
リカレントニューラルネットワーク(RNN)は、チューリング完全性とシーケンシャルな処理能力のために、計算の潜在能力を秘めている。
時間によるバックプロパゲーション(BPTT)は、時間とともにRNNをアンロールすることでバックプロパゲーションアルゴリズムを拡張する。
BPTTは、前方と後方のフェーズをインターリーブし、正確な勾配情報を格納する必要があるなど、大きな欠点に悩まされている。
BPTTと競合するRNNにおける摂動学習に対する新しいアプローチを提案する。
論文 参考訳(メタデータ) (2024-05-14T21:15:29Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
フォワード学習は、ディープニューラルネットワークを学ぶためのバックプロップに代わる生物学的に妥当な代替手段である。
重みよりも活性化に摂動を適用することにより、前方勾配のばらつきを著しく低減できることを示す。
提案手法はMNIST と CIFAR-10 のバックプロップと一致し,ImageNet 上で提案したバックプロップフリーアルゴリズムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2022-10-07T03:52:27Z) - Learning with Local Gradients at the Edge [14.94491070863641]
我々は、Target Projection Gradient Descent (tpSGD) と呼ばれる新しいバックプロパゲーションフリー最適化アルゴリズムを提案する。
tpSGDは、任意の損失関数を扱うために、直接ランダムターゲット射影を一般化する。
我々は、深層ニューラルネットワークのトレーニングにおけるtpSGDの性能を評価し、マルチ層RNNへのアプローチを拡張した。
論文 参考訳(メタデータ) (2022-08-17T19:51:06Z) - A comparative study of back propagation and its alternatives on
multilayer perceptrons [0.0]
フィードフォワードニューラルネットワークのバックパスをトレーニングするデファクトアルゴリズムはバックプロパゲーション(BP)である
ほぼすべての異なるアクティベーション関数を使用することで、ディープニューラルネットワークの層を通して勾配を後方に伝播させるのが効率的かつ効果的になった。
本稿では、畳み込みニューラルネットワーク(CNN)における予測とニューロンの安定性と類似性を解析し、その1つのアルゴリズムの新たなバリエーションを提案する。
論文 参考訳(メタデータ) (2022-05-31T18:44:13Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - A Theoretical Framework for Target Propagation [75.52598682467817]
我々は、バックプロパゲーション(BP)の代替として人気があるが、まだ完全には理解されていないターゲット伝搬(TP)を解析する。
提案理論は,TPがガウス・ニュートン最適化と密接に関係していることを示し,BPとは大きく異なる。
我々は,フィードバックウェイトトレーニングを改善する新しいリコンストラクション損失を通じて,この問題に対する第1の解決策を提供する。
論文 参考訳(メタデータ) (2020-06-25T12:07:06Z) - Scaling Equilibrium Propagation to Deep ConvNets by Drastically Reducing
its Gradient Estimator Bias [65.13042449121411]
実際には、EPによって提供される勾配推定によるネットワークのトレーニングは、MNISTよりも難しい視覚タスクにスケールしない。
有限ヌード法に固有のEPの勾配推定のバイアスがこの現象の原因であることを示す。
これらの手法を適用し、非対称な前方および後方接続を持つアーキテクチャをトレーニングし、13.2%のテストエラーを発生させる。
論文 参考訳(メタデータ) (2020-06-06T09:36:07Z) - Improving the Backpropagation Algorithm with Consequentialism Weight
Updates over Mini-Batches [0.40611352512781856]
適応フィルタのスタックとして多層ニューラルネットワークを考えることが可能であることを示す。
我々は,BPで発生した行動の悪影響を予測し,その発生前にも予測し,よりよいアルゴリズムを導入する。
我々の実験は、ディープニューラルネットワークのトレーニングにおけるアルゴリズムの有用性を示す。
論文 参考訳(メタデータ) (2020-03-11T08:45:36Z) - Semi-Implicit Back Propagation [1.5533842336139065]
ニューラルネットワークトレーニングのための半単純バック伝搬法を提案する。
ニューロンの差は後方方向に伝播し、パラメータは近位写像で更新される。
MNISTとCIFAR-10の両方の実験により、提案アルゴリズムは損失減少とトレーニング/検証の精度の両方において、より良い性能をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-10T03:26:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。