Automatic tumour segmentation in H&E-stained whole-slide images of the
pancreas
- URL: http://arxiv.org/abs/2112.01533v1
- Date: Wed, 1 Dec 2021 22:05:15 GMT
- Title: Automatic tumour segmentation in H&E-stained whole-slide images of the
pancreas
- Authors: Pierpaolo Vendittelli and Esther M.M. Smeets and Geert Litjens
- Abstract summary: We propose a multi-task convolutional neural network to balance disease detection and segmentation accuracy.
We validated our approach on a dataset of 29 patients at different resolutions.
- Score: 2.4431235585344475
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pancreatic cancer will soon be the second leading cause of cancer-related
death in Western society. Imaging techniques such as CT, MRI and ultrasound
typically help providing the initial diagnosis, but histopathological
assessment is still the gold standard for final confirmation of disease
presence and prognosis. In recent years machine learning approaches and
pathomics pipelines have shown potential in improving diagnostics and
prognostics in other cancerous entities, such as breast and prostate cancer. A
crucial first step in these pipelines is typically identification and
segmentation of the tumour area. Ideally this step is done automatically to
prevent time consuming manual annotation. We propose a multi-task convolutional
neural network to balance disease detection and segmentation accuracy. We
validated our approach on a dataset of 29 patients (for a total of 58 slides)
at different resolutions. The best single task segmentation network achieved a
median Dice of 0.885 (0.122) IQR at a resolution of 15.56 $\mu$m. Our
multi-task network improved on that with a median Dice score of 0.934 (0.077)
IQR.
Related papers
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Image Synthesis-based Late Stage Cancer Augmentation and Semi-Supervised
Segmentation for MRI Rectal Cancer Staging [9.992841347751332]
The aim of this study is to segment the mesorectum, rectum, and rectal cancer region so that the system can predict T-stage from segmentation results.
In the ablation studies, our semi-supervised learning approach with the T-staging loss improved specificity by 0.13.
arXiv Detail & Related papers (2023-12-08T01:36:24Z) - Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) is proposed to jointly segment and classify each lesion with improved anchor queries and a foreground-enhanced sampling loss.
PLAN achieves 95% and 96% in patient-level sensitivity and specificity.
On contrast-enhanced CT, our lesion-level detection precision, recall, and classification accuracy are 92%, 89%, and 86%, outperforming widely used CNN and transformers for lesion segmentation.
arXiv Detail & Related papers (2023-07-17T06:21:45Z) - Towards Tumour Graph Learning for Survival Prediction in Head & Neck
Cancer Patients [0.0]
Nearly one million new cases of head & neck cancer diagnosed worldwide in 2020.
automated segmentation and prognosis estimation approaches can help ensure each patient gets the most effective treatment.
This paper presents a framework to perform these functions on arbitrary field of view (FoV) PET and CT registered scans.
arXiv Detail & Related papers (2023-04-17T09:32:06Z) - MLC at HECKTOR 2022: The Effect and Importance of Training Data when
Analyzing Cases of Head and Neck Tumors using Machine Learning [0.9166327220922845]
This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022.
Analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis.
arXiv Detail & Related papers (2022-11-30T09:04:27Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Segmentation of the Myocardium on Late-Gadolinium Enhanced MRI based on
2.5 D Residual Squeeze and Excitation Deep Learning Model [55.09533240649176]
The aim of this work is to develop an accurate automatic segmentation method based on deep learning models for the myocardial borders on LGE-MRI.
A total number of 320 exams (with a mean number of 6 slices per exam) were used for training and 28 exams used for testing.
The performance analysis of the proposed ensemble model in the basal and middle slices was similar as compared to intra-observer study and slightly lower at apical slices.
arXiv Detail & Related papers (2020-05-27T20:44:38Z) - Segmentation for Classification of Screening Pancreatic Neuroendocrine
Tumors [72.65802386845002]
This work presents comprehensive results to detect in the early stage the pancreatic neuroendocrine tumors (PNETs) in abdominal CT scans.
To the best of our knowledge, this task has not been studied before as a computational task.
Our approach outperforms state-of-the-art segmentation networks and achieves a sensitivity of $89.47%$ at a specificity of $81.08%$.
arXiv Detail & Related papers (2020-04-04T21:21:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.