Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging
- URL: http://arxiv.org/abs/2501.09185v1
- Date: Wed, 15 Jan 2025 22:23:41 GMT
- Title: Cancer-Net PCa-Seg: Benchmarking Deep Learning Models for Prostate Cancer Segmentation Using Synthetic Correlated Diffusion Imaging
- Authors: Jarett Dewbury, Chi-en Amy Tai, Alexander Wong,
- Abstract summary: Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29% of all diagnoses and 35,000 total deaths in 2024.
Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability.
We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment PCa lesions from a 200 CDI$
- Score: 65.83291923029985
- License:
- Abstract: Prostate cancer (PCa) is the most prevalent cancer among men in the United States, accounting for nearly 300,000 cases, 29% of all diagnoses and 35,000 total deaths in 2024. Traditional screening methods such as prostate-specific antigen (PSA) testing and magnetic resonance imaging (MRI) have been pivotal in diagnosis, but have faced limitations in specificity and generalizability. In this paper, we explore the potential of enhancing PCa lesion segmentation using a novel MRI modality called synthetic correlated diffusion imaging (CDI$^s$). We employ several state-of-the-art deep learning models, including U-Net, SegResNet, Swin UNETR, Attention U-Net, and LightM-UNet, to segment PCa lesions from a 200 CDI$^s$ patient cohort. We find that SegResNet achieved superior segmentation performance with a Dice-Sorensen coefficient (DSC) of $76.68 \pm 0.8$. Notably, the Attention U-Net, while slightly less accurate (DSC $74.82 \pm 2.0$), offered a favorable balance between accuracy and computational efficiency. Our findings demonstrate the potential of deep learning models in improving PCa lesion segmentation using CDI$^s$ to enhance PCa management and clinical support.
Related papers
- Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Cancer-Net PCa-Data: An Open-Source Benchmark Dataset for Prostate
Cancer Clinical Decision Support using Synthetic Correlated Diffusion Imaging
Data [75.77035221531261]
Cancer-Net PCa-Data is an open-source benchmark dataset of volumetric CDI$s$ imaging data of PCa patients.
Cancer-Net PCa-Data is the first-ever public dataset of CDI$s$ imaging data for PCa.
arXiv Detail & Related papers (2023-11-20T10:28:52Z) - Enhancing Prostate Cancer Diagnosis with Deep Learning: A Study using
mpMRI Segmentation and Classification [0.0]
Prostate cancer (PCa) is a severe disease among men globally. It is important to identify PCa early and make a precise diagnosis for effective treatment.
Deep learning (DL) models can enhance existing clinical systems and improve patient care by locating regions of interest for physicians.
This work uses well-known DL models for the classification and segmentation of mpMRI images to detect PCa.
arXiv Detail & Related papers (2023-10-09T03:00:15Z) - A Multi-Institutional Open-Source Benchmark Dataset for Breast Cancer
Clinical Decision Support using Synthetic Correlated Diffusion Imaging Data [82.74877848011798]
Cancer-Net BCa is a multi-institutional open-source benchmark dataset of volumetric CDI$s$ imaging data of breast cancer patients.
Cancer-Net BCa is publicly available as a part of a global open-source initiative dedicated to accelerating advancement in machine learning to aid clinicians in the fight against cancer.
arXiv Detail & Related papers (2023-04-12T05:41:44Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - End-to-end Prostate Cancer Detection in bpMRI via 3D CNNs: Effect of
Attention Mechanisms, Clinical Priori and Decoupled False Positive Reduction [0.0]
We present a novel 3D computer-aided detection and diagnosis (CAD) model for automated localization of clinically significant prostate cancer (csa) in bi-parametric MR imaging (bpMRI)
Deep attention mechanisms drive its detection network, targeting multi-resolution, salient structures and highly discriminative feature dimensions.
CNN-based models can be trained to detect biopsy-confirmed malignancies in an independent cohort.
arXiv Detail & Related papers (2021-01-08T22:59:30Z) - Comparative performance analysis of the ResNet backbones of Mask RCNN to
segment the signs of COVID-19 in chest CT scans [1.2461503242570642]
This paper aims to identify and monitor the effects of COVID-19 on the human lungs by employing Deep Neural Networks on axial CT scan of lungs.
We have adopted Mask RCNN, with ResNet50 and ResNet101 as its backbone, to segment the regions, affected by COVID-19 coronavirus.
Using the regions of human lungs, where symptoms have manifested, the model classifies condition of the patient as either "Mild" or "Alarming"
arXiv Detail & Related papers (2020-08-21T23:42:08Z) - Automatic Polyp Segmentation Using Convolutional Neural Networks [4.123347304960947]
Computer-aided diagnosis systems have the potential to be applied for polyp screening.
DenseNet169 feature extractor combined with U-Net architecture achieved an accuracy of 99.15%.
arXiv Detail & Related papers (2020-04-22T18:54:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.